\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\)\(\frac{1}{61\times66}\)
Tính nhanh: \(\left(\frac{1}{11\times16}\right)+\left(\frac{1}{16\times21}\right)+\left(\frac{1}{21\times26}\right)+...+\left(\frac{1}{56\times61}\right)+\left(\frac{1}{61\times66}\right)\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{56\times61}+\frac{5}{61\times66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}=\frac{1}{66}\)
\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
\(=\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\frac{5}{66}\)
\(=\frac{1}{66}\)
A=\(\frac{5}{11\times16}+\frac{5}{16\times21}+......+\frac{5}{61\times66}\)
\(A=\frac{16-11}{11.16}+\frac{21-16}{16.21}+...+\frac{66-61}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
Tính D=\(\frac{\frac{15}{6\times16}+\frac{15}{16\times26}+\frac{15}{26\times36}}{\frac{33}{6\times16}-\frac{63}{16\times26}+\frac{93}{26\times36}}\)
Ta có: \(D=\frac{\frac{15}{6x16}+\frac{15}{16x26}+\frac{15}{26x36}}{\frac{33}{6x16}-\frac{63}{16x26}+\frac{93}{26x36}}\)
\(\Rightarrow D=\frac{15.\frac{1}{6x16}+15.\frac{1}{16x26}+15.\frac{1}{26x36}}{3.11.\frac{1}{6x16}-3.21.\frac{1}{16x26}+3.31.\frac{1}{26x36}}\)
\(\Rightarrow D=\frac{15.\left(\frac{1}{6x16}+\frac{1}{16x26}+\frac{1}{26x36}\right)}{3.\left(\frac{11}{6x16}-\frac{21}{16x26}+\frac{31}{26x36}\right)}\)
\(\Rightarrow D=5.\left(\frac{1}{6x16}+\frac{1}{16x26}+\frac{1}{26x36}\right):\left(\frac{11}{6x16}-\frac{21}{16x26}+\frac{31}{26x36}\right)\)
\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+\frac{1}{13\times17}+\frac{1}{17\times21}+\frac{1}{21\times25}\)
\(4S=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)
\(S=\frac{4}{25}\times\frac{1}{4}=\frac{1}{25}\)
\(4S=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}=\frac{1}{5}-\frac{1}{25}=\frac{4}{25}\)
\(S=\frac{4}{25}\times\frac{1}{4}=\frac{1}{25}\)
4S=1/5-1/9+1/9-1/13+1/13-1/17+1/17-1/21+1/21-1/25
4S=1/5-1/25
4S=4/25
S=4/25:4=1/25
\(M=\frac{7}{1\times6}+\frac{7}{16\times11}+\frac{7}{11\times16}+................\frac{7}{256\times261}\)
NÊU CÁCH LÀM GIÙM MÌNH LUÔN NHA
\(M=\frac{7}{1.6}+\frac{7}{6.11}+\frac{7}{11.16}+...+\frac{7}{256.261}\)
\(M=7\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{256.261}\right)\)
\(M=7.\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{256}-\frac{1}{261}\right)\)
\(M=\frac{7}{5}\left(1-\frac{1}{261}\right)\)
\(M=\frac{7}{5}.\frac{260}{261}\)
\(M=\frac{364}{261}\)
nhân 7/5vaof hai vế của M,ta có\(M\frac{5}{ }=\frac{ }{5}.\left(M\right)\\ thành\frac{5}{1.6}+...+\frac{5}{256.261}\\ \)kết quả là52/261
Chứng minh:
c.\(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b.\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)
a.\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\)
Đáp số: A = | |
`@` `\text {Ans}`
`\downarrow`
\(\text{ A = }\dfrac{1}{4\times8}+\dfrac{1}{8\times12}+\dfrac{1}{12\times16}+...+\dfrac{1}{172\times176}\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{4}{4\times8}+\dfrac{4}{12\times16}+...+\dfrac{4}{172\times176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{16}+...+\dfrac{1}{172}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\dfrac{43}{176}\)
\(\text{A = }\dfrac{43}{704}\)
Đáp số: `\text {A =} 43/704.`
Đáp số: A = | |
A = 1/4 x 8 + 1/8 x 12 + 1/12 x 16 + ... + 1/176 x 180
=> 4A = 4/4 x 8 + 4/8 x 12 + 4/12 x 16 + ... + 4/176 x 180
=> 4A = 1/4 - 1/8 + 1/8 - 1/12 + 1/12 - 1/16 + ... 1/176 - 1/180
=> 4A = 1/4 - 1/180
=> 4A = 45/180 - 1/180
=> 4A = 44/180
=> 4A = 11/45
=> A = 11/45 : 4
=> A = 11/180
Vậy A = 11/180
A = \(\dfrac{1}{4\times8}\) + \(\dfrac{1}{8\times12}\) + \(\dfrac{1}{12\times16}\) +...+ \(\dfrac{1}{176\times180}\)
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{4}{4\times8}\)+ \(\dfrac{4}{12\times16}\)+...+ \(\dfrac{4}{176\times180}\))
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\) +...+ \(\dfrac{1}{176}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)(\(\dfrac{1}{4}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)\(\dfrac{11}{45}\)
A = \(\dfrac{11}{180}\)
Cho P= \(\frac{1}{3}+\frac{1}{16}+\frac{1}{19}+\frac{1}{21}+\frac{1}{61}+\frac{1}{72}+\frac{1}{83}+\frac{1}{94}\)
So sánh P với \(\frac{3}{5}\)
P = 1/3 + 1/16 + 1/19 + 1/21 + 1/61 + 1/72 + 1/83 + 1/94
P = 0, 5490527821
3/5 = 0, 6
Mà 0, 5490527821 < 0, 6
Nên: P < 3/5