Giả sử a và b là 2 số nguyên tố lẻ liên tiếp .Chứng minh (a+b):2 là hợp số
Cho a và b là 2 số nguyên tố lẻ liên tiếp .
Chứng minh rằng ( a+b ) : 2 là hợp số
(a+b) :2 là hợp số vì khi 2 số lẻ cộng với nhau đáp số là số chẵn mà số chẵn thì chia hết cho 2
Ví dụ : (1+3):2= 4:2 =2
Suy ra (a+b):2
xin lỗi hồ duy hiếu nhưng mình nghĩ lý luận và cách giải của bạn sai đây là 2 số nguyên tố lẻ liên tiếp chứ ko phải 2 số lẻ liên tiếp
Chứng minh rằng :
a) 2 và 3 là hai số tự nhiên liên tiếp đều là số nguyên tố.
b) 3,5,7 là ba số lẻ liên tiếp đểu là số nguyên tố.
Ban lam giup minh
Tinh nhanh lop 4
42 x 43 - 12 x 9 - 42 x 3
cho a và b là 2 số nguyên tố lẻ liên tiếp ( b > a ) . CMR ( a + b ) : 2 là hợp số
Vì a và b là 2 số nguyên tố lẻ liên tiếp và b > a nên :
=> a + 2 = b
=> ( a + b ) : 2
= ( a + a + 2 ) : 2
= ( a x 2 + 2 ) : 2
= a x 2 : 2 + 2 : 2
= a + 1
Mà a là số lẻ nên a + 1 là số chẵn
Vậy ( a + b ) : 2 là hợp số ( đpcm )
Câu 1
Tìm 3 số nguyên tố liên tiếp p,q,r sao cho p2+q2+r2 cũng là số nguyên tố
Câu 2
Tìm bộ 3 số nguyên tố a,b,c sao cho abc<ab+bc+ca
Câu 3
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thỏa mãn n.2n-1 chia hết cho p
Câu 4
Cho p là số nguyên tố, chứng minh rằng số 2p-1 chỉ có ước nguyên tố có dạng 2pk+1
Câu 5
Giả sử p là số nguyên tố lẻ và m=\(\frac{9^p-1}{8}\) . Chứng minh rằng m là hợp số lẻ không chia hết cho 3 và 3m-1= 1 ( mod m)
chứng minh các số sau đây là 2 số nguyên tố cùng nhau:
a)2 số lẻ liên liên tiếp
b)2n+5 và 3n+7
gọi 2.n +1 là một số lẻ bất kì (n thuộc N )
suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp
gọi d thuoocj vào ƯC(2n+1,2n+3 ) (d thuộc N*)
suy ra 2n+1 và 2n+3 chia hết cho d
suy ra [(2n+3) - (2n+1)] chia hết cho d
suy ra 2 chia hết cho d
suy ra d thuộc Ư(2) ={1;2}
suy ra d khác 2 (vì 2n+1 và 2n+3 là các số lẻ )
suy ra d =1
suy ra ƯC (2n+1 ,2n+3 ) =1
suy ra UWCLN (3n+1 , 2n+3) =1
suy ra 2n +1 và 2n+3 nguyên tố cùng nhau
vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau .
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
a) chứng minh hai số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
b) chứng minh hai số 2n + 1 và 4n + 3 là 2 số nguyên tố cùng nhau
( với n là số tự nhiên )
mik đang cần gấp!Ai biết giúp mik nha!MIK CÁM ƠN NHIỀU!
Câu a) thôi, câu b) chị chưa nghĩ được!
+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )
+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* )
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
<=> 2 chia hết cho d
=> d thuộc Ư ( 2 )
=> d thuộc {1; 2}
Nhưng d là số lẻ => d ≠ 2 => d = 1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.