Cho a>b>1 tìm số \(\frac{ }{ab}\)biết \(\frac{ }{aa}\)*\(\frac{ }{bb}\)=3267
Tìm ab
Cho tam giác ABC, điểm C' thuộc AB. Qua A vẽ đường thẳng AA' song song với CC', qua B vẽ đường thẳng BB' song song với CC' (A' thuộc BC, B' thuộc AC). Chứng minh rằng \(\frac{1}{AA'}+\frac{1}{BB'}=\frac{1}{CC'}\)
Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC. Biết rằng AA',BB',CC' đồng quy tại M. Chứng minh rằng: \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Bạn đọc tự vẽ hình.
Xét tam giác \(AA'C\)có \(M,B,B'\)lần lượt nằm trên các cạnh \(AA',A'C,CA\)và \(M,B,B'\)thẳng hàng, do đó theo định lí Menelaus ta có:
\(\frac{MA}{MA'}.\frac{BA'}{BC}.\frac{B'C}{B'A}=1\Leftrightarrow\frac{MA}{MA'}.\frac{BA'}{BC}=\frac{B'A}{B'C}\)
Tương tự khi xét tam giác \(AA'B\)với các điểm \(M,B,B'\)ta cũng có:
\(\frac{MA}{MA'}.\frac{CA'}{CB}=\frac{C'A}{C'B}\)
Suy ra \(\frac{B'A}{B'C}+\frac{C'A}{C'B}=\frac{MA}{MA'}\left(\frac{BA'}{BC}+\frac{CA'}{CB}\right)=\frac{MA}{MA'}.\frac{BC}{BC}=\frac{MA}{MA'}\).
Ta có đpcm.
\(\frac{AM}{A'M}=\frac{AE}{BA'}=\frac{AD}{A'C}=\frac{AD+AE}{A'C+A'B}=\frac{DE}{BC}\)
\(\Delta CBB'\)có AE // BC , nên \(\frac{AB'}{B'C}=\frac{AE}{BC}\)( hệ quả của định lí Ta-lét);
\(\Delta BCC'\)có DA // BC , nên \(\frac{AC'}{BC'}=\frac{DA}{BC}\)( hệ quả của định lí Ta-lét).
Ta có : \(\frac{AB'}{CB'}=\frac{AC'}{BC'}=\frac{AE}{BC}+\frac{DA}{BC}=\frac{DE}{BC}\)
Do đó : \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
cho tam giác abc và 3 điểm a',b',c'lần lượt nằm trên 3 cạnh bc,ca,ab sao cho aa',bb',cc' đồng quy. cmr \(\frac{a'b}{a'c}.\frac{b'c}{b'a}.\frac{c'a}{c'b}\)=1
Cho tam giác ABC, cac diem A', B', C' lan luot nam tren canh BC, AC, AB sao cho AA', BB', CC' dong qui tai diem I.
CMR: \(\frac{AI}{A'I}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
Cho tam giác ABC nhọn, các đường cao AA', BB', CC'', H là trực tâm.
a) Tính tổng \(\frac{HA'}{AA'}+\frac{Hb'}{BB'}+\frac{HC'}{CC'}\)
b) gọi AI là phân giác của tam giác ABC, IM, IN thứ tự là phân giác của góc AIC và ATB. Cmr: AN.BI.CM=BN.IC.AM
c) cmr: \(\frac{\left(AB+BC+CA\right)^2}{AA'^2=BB'^2+CC'^2}\ge4\)
a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)
mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)
\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)
vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA giao điểm Cx tại I
\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật
\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)
Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC
\(\Rightarrow\)BD2 \(\le\)( BC + CD )2
\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2
\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2
\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2
\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2 . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC
tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC
4AA'2 \(\le\)( AB + AC )2 - BC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC
Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)
\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm
a) Tính tổng \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM, IN lần lượt là phân giác của góc AIC và AIB. Chứng minh rằng: AN.BI.CM=BN.IC.AM
c) Chứng minh rằng \(\frac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Bài 1: Tìm số tự nhiên có hai chữ số sao cho tỉ số của số đó và tổng các chữ số của nó có giá trị nhỏ nhất
Bài 2: Tìm a,b,c \(\in\)Z* sao cho:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Bài 3: Tìm ab biết:
aa . ab = abb + b
Cho A', B', C' lần lượt nằm trên ba cạnh BC, AC, AB (hoặc trên các đường thẳng chứa các cạnh) của tam giác ABC sao cho AA', BB', CC' đồng quy tại O.
Chứng minh rằng : \(\frac{AC'}{BC'}.\frac{BA'}{CA'}.\frac{CB'}{AB'}=1\) (Định lí Xêva).
trong sách nâng cao phát triển toán 8 có bạn nhé
Cho a,b,c là các số thực dương thỏa mãn:ab+bc+ac=3abc
Tìm giá trị nhỏ nhất của biểu thức K=\(\frac{a^2}{c\left(cc+aa\right)}\)+\(\frac{a^2}{a\left(aa+bb\right)}\)+\(\frac{c^2}{b\left(bb+cc\right)}\)