Tìm cặp số nguyên dương (x,y) thỏa mãn \(3x^3-xy=5\)
Tìm cặp số (x ; y) nguyên dương thỏa mãn xy = 3(y-x)
.. Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
Tìm các cặp số nguyên (x; y) thỏa mãn: x^2-xy+3x-y=5
x2 - xy + 3x - y = 5
\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5
\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7
\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7
\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7
Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z
Xét các TH:
TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)
TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)
TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)
TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các cặp số ( x ; y) nguyên dương thỏa mãn: xy = 3 (y - x)
Ta có xy=3(y-x) => xy+3x-3y=0
=> x(y+3)-3y=0=> (x-3).(y+3)=-9
=> (x-3).(y+3)=-1.9=-3.3=-9.1=1.(-9)=3.(-3)=9.(-1)
=> x=2;0;-6;4;6;12
y=6;0;-2;-12;-6;-4
vì (x;y) là cặp số nguyên dương x=-2 và y=12 loại
Vấy x có hai giá trị (2;0) tương ứng với hai giá trị của y ( 6;0)
tìm các cặp số nguyên x y thỏa mãn xy + 3x - y - 3 = 3
Ta có: \(xy+3x-y-3=0\)
\(\Rightarrow\)xy + 3x - y = 6
=>x(y+3) - y = 6
=>x(y+3) - y - 3 = 3
=>x(y+3) - (y+3) = 3
=> (y+3)(x-1) =3
Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên
Ta có bảng sau:
y+3 | -3 | -1 | 1 | 3 |
y | -6 | -4 | -2 | 0 |
x-1 | -1 | -3 | 3 | 1 |
x | 0 | -2 | 4 | 2 |
Bài giải
xy + 3x - y - 3 = 3
xy + 3x - y = 6
x ( y + 3 ) - ( y + 3 ) + 3 = 6
( x - 1 ) ( y + 3 ) = 3
Ta có bảng :
x - 1 | - 3 | - 1 | 1 | 3 |
y + 3 | - 1 | - 3 | 3 | 1 |
x | - 2 | 0 | 2 | 4 |
y | - 4 | - 6 | 0 | - 2 |
Vậy ( x , y ) = ( - 2 ; - 4 ) ; ( 0 ; - 6 ) ; ( 2 ; 0 ) ; ( 4 ; - 2 )
\(xy+3x-y-3=0\)
\(\Leftrightarrow xy+3x-y=6\)
\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)+3=6\)
\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=3\)
=> x - 1; y + 3 \(\in\)Ư(3) = {1;-1;3;-3}
Tự lập bảng nhé !
Tìm cặp số nguyên x,y thỏa mãn : xy - y - x\(^2\)+ 3x = 5
Tìm cặp số (x, y) nguyên âm thỏa mãn xy + 3x + 2y + 6 = 0 và |x| + |y| =5
TA PHAN TICH CAI PHAN DAU TRUOC
=X(Y+3)+2Y=-6(VI 0-6)
=X(Y+3)+2(Y+3)-6=-6
=X(Y+3)+2(Y+3)=-6+6
(Y+3)(X+2)=0
VI X,Y LA SO NGUYEN AM
(Y+3)VA (X+2)DEU BANG 0
Y=-3CON X=-2
x=-2;y=-3
không cần phần trị tuyệt đối đâu