chứng tỏ rằng phân số \(\frac{5m+7}{3m+4}\)tối giản với mọi số nguyên n
chứng tỏ rằng với mọi số nguyên n thì các phân số sau đây tối giản
4n+5
4n+7
Chứng tỏ rằng với mọi số nguyên n phân số 3n-5/ 3-2n là phân số tối giản
e gio biet lam chua ha cu
ki ten
thuc
dinh trong thuc
chứng tỏ rằng với mọi số nguyên n , phân số 3n-5 / 3-2n là phân số tối giản
Chứng tỏ rằng: 16 n + 5 24 n + 7 là phân số tối giản với mọi n ∈ N
c) Chứng tỏ rằng: 16 n + 5 24 n + 7 là phân số tối giản với mọi n ∈ N
1. Chứng tỏ rằng phân số \(\frac{2n+5}{3n+7}\)là phân số tối giản với mọi n\(\in\)Z
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
chứng tỏ phân số sau là phân số tối giản với mọi số nguyên n: 2n+3/3n+4
đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z
suy ra (2n+3)chia hết cho (kí hiệu) d
(3n+4)chia hết cho d
suy ra 3.(2n + 3)chia hết cho d
2.(3n +4)chia hết cho d
suy ra 3.2n+3.3chia hết cho d
2.3n+2.4chia hết cho d
suy ra 6n+9 chia hết cho d
6n +8 chia hết cho d
suy ra (6n+9)-(6n+8)chia hết cho d
suy ra 1chia hết cho d
suy ra d =1
vậy 2n+3/3n+4
chu mi la , mai mik ik hok ùi ,chu mi la
cảm ơn bạn Nguyễn Đăng Luyện nhìu nha!
a, Chứng tỏ với mọi số nguyên n, p/s \(\frac{n^3+2n}{n^4+3n^2+1}\) là tối giản
b, TÌm tất cả giá trị x thuộc Z để phân số: \(\frac{18x+3}{21x+7}\)là phân số tối giản
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
Cho a bằng n +1 trên 2n+3. Chứng tỏ rằng A là phân số tối giản với mọi n là số nguyên tố
Gọi d là ƯCLN ( n + 1 ; 2n + 3 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )
=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN (
đấy nè Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản