Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Mai
Xem chi tiết
gạo thịnh
Xem chi tiết
Nguyen thi diem quynh
Xem chi tiết
Không Tên
Xem chi tiết
IS
17 tháng 3 2020 lúc 12:37

CM được S,T,E thẳng hàng 

Xét tam giác ECT zà tam giác EST có \(\widehat{CET}\left(chung\right),\widehat{ECT}=\widehat{ESC}\)

=>tam giác ECT=tam giác EST(g.g) 

=>\(\frac{EC}{ES}=\frac{ET}{EC}=>ET.ES=EC^2\)

xét tam giác EMT zà tam giác ESN có \(\widehat{MET}\left(chung\right),\widehat{EMT}=\widehat{ESN}\)

=> tam giác ECT = tam giác ESN(g.g) 

=>\(\frac{EM}{ES}=\frac{ET}{EN}=>ET.ES=EM.EN=EM.EN\\\)

Nên \(EC^2=EM.EN=\left(=ET.ES\right)=\frac{EC}{EN}=\frac{EM}{EC}\)

tam giác ECM = tam giasc ENC (c.g.c)

=>\(\widehat{EMC}=\widehat{ENC}\)

=>\(\widehat{ECD}+\widehat{DCM}=\widehat{NAC}+\widehat{NCA}\)

mà \(\widehat{ECD=\widehat{NAC}}\)

nên \(\widehat{DCM}=\widehat{NCA}\)

ta có \(KL//AB=>\widebat{BK}=\widebat{AL}=>\widehat{DCM}=\widehat{LCA}\)

ta có\(\widehat{NCA}=\widehat{LCA}\left(=\widehat{DCM}\right)\)

=> hai tia CN , CL trùng nhau .zậy C,N,L thẳng hàng

Khách vãng lai đã xóa
Phạm Ánh Dương
Xem chi tiết
Trần Thị Hương Ly
17 tháng 4 2020 lúc 21:36

Bạn tải app Qantas là giai dc tất 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
trần thúy trang
Xem chi tiết
Huy Hoang
18 tháng 7 2020 lúc 15:30

A D B O E C M

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC ,  AB = AC

Chu vi  \(\Delta ADE\):

    \(C_{\Delta ADE}\) = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB ( đpcm )

Khách vãng lai đã xóa
vu hoai hai
Xem chi tiết
Cô Hoàng Huyền
31 tháng 1 2018 lúc 16:27

B B C C A A M M K K H H I I P P Q Q T T

a) Ta thấy các tam giác vuông KMB và IMB có chung cạnh huyền MB nên M, K, B, I cùng thuộc đường tròn đường kính MB hay BIMK là tứ giác nội tiếp.

Các tam giác vuông MIC và MHC có chung cạnh huyền MC nên M, I, C, H cùng thuộc đường tròn đường kính MC hay CIMH là tứ giác nội tiếp.

b) Gọi  T là giao điểm của MI với AB.

Do tứ giác BIMK nội tiếp nên \(\widehat{MKI}=\widehat{MBI};\widehat{KIM}=\widehat{KBM}\)  (Hai góc nội tiếp)

Tương tự ta cũng có \(\widehat{HMC}=\widehat{HIC};\widehat{MCH}=\widehat{MIH}\)

Vậy nên \(\widehat{KMT}=\widehat{MKI}+\widehat{KIM}=\widehat{MBI}+\widehat{KBM}=\widehat{ABC}\)

\(\widehat{HMT}=\widehat{MIH}+\widehat{MHI}=\widehat{MCH}+\widehat{MCI}=\widehat{ACB}\)

Mà tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

Suy ra \(\widehat{KMT}=\widehat{HMT}\) hat MT là phân giác góc \(\widehat{KMH}\)

Vậy tia đối của tia MI chính là phân giác góc \(\widehat{KMH}\)

Nguyễn Thảo Hiền
Xem chi tiết
Long
29 tháng 8 lúc 8:23

Ta có BMIK nội tiếp

=> góc IMK = góc ABC

IMCH nội tiếp

=> góc IMH= góc ACB

Tam giác ABC cân tại A

=>góc ACB=góc ABC