a x 2 + a x 3 +1000 = 2000
cho x^1000+y^1000=a; x^2000+y^2000=2b/3; x^5000+y^5000=c/36; tìm liên hệ giữa a,b,c
đặt x^1000=m,y^1000=n
m+n=a
m2+n2=2b/3 =>a2=2b/3+2mn =>mn=a2-2b/3
m5+n5=c/36 <=>(n+m)[(m+n)4-5mn(m+n)2+5m2n2]=c/36
<=>a.[a4-5(a2-2b/3)a2+5(a2-2b/3)2 ]=c/36 <=>a(a4-10a2b/3+20b2/9)=c/36 <=>a(9a4-30a2b+20b2)=c/4
Cho x2 + y2 = 1 và bx2 = ay2
Chứng minh rằng : \(\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)
\(bx^2=ay^2\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\Rightarrow\left(\dfrac{x^2}{a}\right)^{1000}=\left(\dfrac{y^2}{b}\right)^{1000}=\left(\dfrac{1}{a+b}\right)^{1000}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}=\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}+\dfrac{1}{\left(a+b\right)^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)
Cho \(x^2+y^2=1\)và\(ay^2=bx^2,\)Chứng minh \(\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\).
Áp dụng tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau:
\(ay^2=bx^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\Rightarrow\left(\dfrac{x^2}{a}\right)^{1000}=\left(\dfrac{y^2}{b}\right)^{1000}=\dfrac{1}{\left(a+b\right)^{1000}}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)
Cho\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\); \(x^2+y^2=1\)
Tính \(\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)
\(\Rightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)
Dấu "=" xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow \frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\left(\frac{x^2}{a}\right)^{1000}+\left(\frac{y^2}{b}\right)^{1000}\)
\(=\frac{1}{(a+b)^{1000}}+\frac{1}{(a+b)^{1000}}=\frac{2}{(a+b)^{1000}}\)
Chu y dua ve bieu thuc dong bac de bien doi nhe
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2+y^2\right)^2}{a+b}\)\(\Leftrightarrow\)\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{x^4+y^4-2x^2y^2}{a+b}\)
\(\Leftrightarrow\dfrac{bx^4\left(a+b\right)+\left(a+b\right)ay^4-ab\left(x^4+y^4-2x^2y^2\right)}{ab\left(a+b\right)}=0\)
\(\Leftrightarrow\dfrac{a^2y^4+b^2x^4-2abx^2y^2}{ab\left(a+b\right)}=0\)\(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Leftrightarrow ay^2=bx^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\Leftrightarrow\dfrac{x^{2000}}{a^{1000}}=\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}\)
-->QED
Cho\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\); \(x^2+y^2=1\)
Tính \(\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}\)
5. Tính theo mẫu
1,23 x 2000 = 1,23 x 2 x 1000= 2,46 x 1000= 2460
a. 3,507 x 300 =
b. 0,0036 x 4000 =
c. 0,026 x 2500 =
d. 234,105 x 2000 =
a. 3,507 x 300 =3,507.3.100=10,521.100=1052,1
b. 0,0036 x 4000 = 0,0036 .4.1000 = 0,0144.100=1,44
c. 0,026 x 2500 =0,026 .25.1000 =0,65.100=65
d. 234,105 x 2000 = 234,105.2.1000=468,21.1000=468210
a. 3,507 x 300 =3,507 x 3x100=10,521x100=1052,1
b. 0,0036 x 4000 = 0,0036 x 4x1000=0,0144x1000=14,4
c. 0,026 x 2500 =0,026 x 25x100=0,65x100=65
d. 234,105 x 2000 = 234,105 x 2x1000=468,21x1000=468210
HT
a. 3,507 x 300 = 3,507 x 3 x 100 = 10,521 x 100 = 1052,1
b. 0,0036 x 4000 = 0,0001x 36 x 4 x 1000 = 0.1 x 144 = 14,4
c. 0,026 x 2500 = 0,001 x 26 x 25 x 100 = 0,1 x 650 = 65
d. 234,105 x 2000 = 234,105 x 2 x 1000 = 468,21 x 1000 = 468210
Tính nhẩm:
5000 + 100 = ..................
7400 - 400 = ..................
2000 3 + 600 = ..................
8000 : 2 + 2000 = ..................
6000 - (5000 - 1000) = ..................
6000 - 5000 + 1000 = ..................
7000 - 3000 x 2 = ..................
(7000 - 3000) x 2 = ..................
5000 + 100 = 5100
7400 - 400 = 7000
2000 3 + 600 = 6600
8000 : 2 + 2000 = 6000
6000 - (5000 - 1000) = 2000
6000 - 5000 + 1000 = 2000
7000 - 3000 x 2 = 1000
(7000 - 3000) x 2 = 8000
5000 + 100 = 5100
7400 - 400 = 7000
2000 3 + 600 = 6600
8000 : 2 + 2000 = 6000
6000 - (5000 - 1000) = 2000
6000 - 5000 + 1000 = 2000
7000 - 3000 x 2 = 1000
(7000 - 3000) x 2 = 8000
5000 + 100 = 5100
7400 - 400 = 7000
2000 3 + 600 = 6600
8000 : 2 + 2000 = 6000
6000 - (5000 - 1000) = 2000
6000 - 5000 + 1000 = 2000
7000 - 3000 x 2 = 1000
(7000 - 3000) x 2 = 8000
Cho : \(\frac{x^4}{a}+\frac{x^4}{a}=\frac{1}{a+b}\) và x2 + y2 = 1 . Chứng minh rằng :
a) bx2 = ay2 b) \(\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{1000}}=\frac{2}{\left(a+b\right)^{1000}}\)
Cho \(\frac{a^4}{x}+\frac{b^4}{y}=\frac{1}{x+y}\) và \(a^2+b^2=1\). CMR:
\(a)bx^2=ay^2\)
\(b)\) \(\frac{x^{2000}}{a^{1000}}+\frac{y^{2000}}{b^{2000}}=\frac{2}{\left(a+b\right)^{1000}}\)
~các cậu giúp tớ nhé~
Với x, y khác 0
Ta có:
\(a^2+b^2=1\Leftrightarrow\left(a^2+b^2\right)^2=1\Leftrightarrow a^4+2a^2b^2+b^4=1\)
Từ bài ra ta suy ra:
\(\frac{a^4}{x}+\frac{b^4}{y}=\frac{a^4+2a^2b^2+b^4}{x+y}\)
<=> \(a^4\left(x+y\right)y+b^4\left(x+y\right)x=a^4xy+2a^2b^2xy+b^4xy\)
<=> \(a^4y^2+b^4x^2-2a^2y.b^2x=0\)
<=> \(\left(a^2y-b^2x\right)^2=0\)
<=> \(a^2y-b^2x=0\)
<=> \(a^2y=b^2x\)
Câu b em xem lại đề nhé: Thử \(a=b=\frac{1}{\sqrt{2}};x=y=1\)vào ko thỏa mãn