Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Ngọc Anh
Xem chi tiết
Phạm Thảo Linh
Xem chi tiết
Xyz OLM
10 tháng 2 2022 lúc 21:41

b) \(\hept{\begin{cases}x^2-4x+3=0\left(1\right)\\x^2+xy+y^2=3\left(2\right)\end{cases}}\)

Từ (1) <=> (x - 1)(x - 3) = 0 \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Với x = 3 => (2) <=> 32 + 3y + y2 = 3 

<=> y2 + 3y + 6 = 0 

<=> \(\left(2y+3\right)^2=-15\)<=> PT vô nghiệm

Với x = 3 => (1) <=> 12 + y + y2 = 3 

<=> (y - 1)(y + 2) = 0

<=> \(\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

=> Hệ có 2 nghiệm (x ; y) = (1;1) ; (1 ; - 2) 

Khách vãng lai đã xóa
Pham Thi Thanh Thuy
Xem chi tiết
Cô Hoàng Huyền
29 tháng 9 2017 lúc 10:35

Ta có phương trình \(\hept{\begin{cases}x^3-y^3=4\left(4x-y\right)\left(1\right)\\y^2-5x^2=4\left(2\right)\end{cases}}\)

Thế phương trình (2)  vào phương trình (1) , ta có \(x^3-y^3=\left(y^2-5x^2\right)\left(4x-y\right)\Rightarrow x^3-y^3=4xy^2-y^3-20x^3+5x^2y\)

\(\Rightarrow21x^3-4xy^2-5x^2y=0\Rightarrow x\left(21x^2-5xy-4y^2\right)=0\)

TH1: x = 0 

Khi đó ta có \(y^2=4\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)

TH2: \(21x^2-5xy-4y^2=0\)

Với \(y=0\Rightarrow x=0\) (Không thỏa mãn phương trình). Vậy \(y\ne0\)

Chia hai vế phương trình cho y2, ta có \(\frac{21x^2}{y^2}-\frac{5x}{y}-4=0\Rightarrow\orbr{\begin{cases}\frac{x}{y}=\frac{4}{7}\\\frac{x}{y}=-\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{7}y\\x=-\frac{1}{3}y\end{cases}}\)

Với \(x=\frac{4}{7}y\Rightarrow y^2-5\left(\frac{4}{7}y\right)^2=4\Rightarrow-\frac{31}{49}y^2=4\) (Vô lý)

Với \(x=\frac{-1}{3}y\Rightarrow y^2-5\left(-\frac{1}{3}y\right)^2=4\Rightarrow\frac{4}{9}y^2=4\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}}\) 

Vậy hệ có các nghiệm là (0; 2) , (0; - 2) , (-1; 3) , (1; -3)

Nguyễn Hữu Thành Quang
Xem chi tiết
alibaba nguyễn
18 tháng 11 2016 lúc 12:41

Xét phương trình (1) ta có

\(2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)

\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)-\left(x+y\right)-2\left(2x-y\right)+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)

\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\sqrt{y-2x+1}-\sqrt{3-3x}\)

Đặt \(\hept{\begin{cases}\sqrt{y-2x+1}=a\left(a\ge0\right)\\\sqrt{3-3x}=b\left(b\ge0\right)\end{cases}\Rightarrow a^2-b^2=x+y-2}\)thì ta có

\(PT\Leftrightarrow-a^2\left(a^2-b^2\right)=a-b\)

\(\Leftrightarrow\left(b-a\right)\left(a^3+a^2b+1\right)=0\)

Ta thấy là \(\left(a^3+a^2b+1\right)>0\)

\(\Rightarrow a=b\)

\(\Leftrightarrow y-2x+1=3-3x\)

\(\Leftrightarrow y=2-x\)

Thế vào pt (2) ta được

\(x^2-2+x-1=\sqrt{4x+2-x+5}-\sqrt{x+4-2x-2}\)

\(\Leftrightarrow x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)

Giải tiếp sẽ có được nghiệm \(\hept{\begin{cases}x=-2\\y=4\end{cases}}\)

Công chúa sinh đôi
18 tháng 11 2016 lúc 12:01

phương trình (1) tách như sau:

(x+y)(2x−y)−(x+y)−2(2x−y)+2=√y−2x+1−√3−3x⇔(x+y−2)(2x−y−1)=√y−2x+1−√3−3x↔{√y−2x+1=a(a≥0)√3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x(x+y)(2x−y)−(x+y)−2(2x−y)+2=y−2x+1−3−3x⇔(x+y−2)(2x−y−1)=y−2x+1−3−3x↔{y−2x+1=a(a≥0)3−3x=b(b≥0)⇒a2−b2=x+y−2;−a2=2x−y−1⇒(a2−b2)(−a2)=a−b⇔(a−b)(−a3−a2b−1)=0⇔a=b(−a3−a2b−1<0;a≥0;b≥0)→a=b⇔y−2x+1=3−3x⇔y=2−x

thế vaò (2) là ok

k cho mình nhé xin các bạn đó cho mình 1 cái có hại gì đến các bạn đâu

Kiệt Nguyễn
5 tháng 7 2020 lúc 10:01

\(\hept{\begin{cases}2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\left(1\right)\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\left(2\right)\end{cases}}\)

\(ĐK:y-2x+1\ge0,4x+y+5\ge0,x+2y-2\ge0,x\le1\)

Trường hợp 1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\). Ta loại vì khi thay vào hệ thì ta thấy cặp nghiệm (x,y) = (1,1) không thỏa mãn

Trường hợp 2: \(\hept{\begin{cases}y-2x+1\ne0\\3-3x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ne1\\x\ne1\end{cases}}\)thì phương trình (1) tương đương: \(\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)

\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Do \(y-2x+1\ge0,\sqrt{3-3x}>0\)nên \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\forall x,y\)

Vì vậy \(x+y-2=0\Leftrightarrow y=2-x\)

Thay y = 2 - x vào (2), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)

\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)

\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Do \(x\le1\)nên \(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra \(x+2=0\Leftrightarrow x=-2\Rightarrow y=4\)(tmđk)

Vậy hệ có 1 nghiệm duy nhất là \(\left(x,y\right)=\left(-2,4\right)\)

Khách vãng lai đã xóa
Hắc Thiên
Xem chi tiết
my name is crazy
Xem chi tiết
hunny
20 tháng 7 2019 lúc 10:26

mấy bài này dễ mà bạn

Nguyễn Thị Nga
Xem chi tiết
Duc nguyen tri
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết