Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Easy Steps
Xem chi tiết
Phan Bảo Huân
30 tháng 4 2017 lúc 21:11

Ta có: Để \(\frac{n}{n+3}\)là số nguyên thì \(n⋮n+3\)

Suy ra:n+3-3\(⋮n+3\)

Suy ra:-3\(⋮n+3\)

Suy ra:n+3\(\in\left[1;3\right]\)

Suy ra:n=0(n thuộc N)

Vậy:S={0}

Anime
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Lightning Farron
8 tháng 8 2016 lúc 22:38

Bài 1:

\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)

\(\Rightarrow5⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)

Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)

Bài 3:

\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)

\(\Rightarrow n-2⋮n+3\)

\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)

\(\Rightarrow5⋮n+3\)

\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)

 

 

 

Lê Yến My
8 tháng 8 2016 lúc 19:49

bạn ra bình chọn cũng như không

Nguyễn Thị Hằng
Xem chi tiết
Nguyễn Anh Kim Hân
8 tháng 7 2016 lúc 20:48

\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)

( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )

\(\Rightarrow n\in\left\{0;1\right\}\)

( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )

Trà My
8 tháng 7 2016 lúc 20:59
\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}\) nguyên

=>21 chia hết cho n-4

=>n-4\(\in\)Ư(21)

=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B nguyên thì \(\frac{8}{2n-1}\) nguyên

=>8 chia hết cho 2n-1

=>2n-1\(\in\)Ư(8)

=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)

Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)

Từ (1) và (2) => n=1 thì A và B nguyên

n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)

           \(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)

Kết luận:n=1 thì A=-4 và B=11

Nguyễn Hoàng Vũ
Xem chi tiết
đỗ thị yến nhi
Xem chi tiết
Nguyễn Phương Uyên
11 tháng 3 2018 lúc 17:46

\(\frac{n+3}{2n-2}\) có giá trị nguyên

\(\Leftrightarrow n+3⋮2n-2\)

\(\Rightarrow2\left(n+3\right)⋮2n-2\)

\(\Rightarrow2n+6⋮2n-2\)

\(\Rightarrow2n-2+8⋮2n-2\)

      \(2n-2⋮2n-2\)

\(\Rightarrow8⋮2n-2\)

\(\Rightarrow2n-2\inƯ\left(8\right)\)

\(\Rightarrow2n-2\in\left\{1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{3;4;6;10\right\}\)

\(\Rightarrow n\in\left\{1,5;2;3;5\right\}\) ; mà n thuộc N

\(\Rightarrow n\in\left\{2;3;5\right\}\)

HaiBa thcs
Xem chi tiết
Đinh Đức Hùng
30 tháng 7 2017 lúc 14:35

Để \(\frac{7}{x^2-x+1}\) là số nguyên khi \(x^2-x+1\) là ước nguyên của 7

\(\RightarrowƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Mà \(x^2-x+1=\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Nên \(x^2-x+1=1\) hoặc \(x^2-x+1=7\)

TH1 : \(x^2-x+1=1\Leftrightarrow x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

TH2 : \(x^2-x+1=7\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)

Vậy \(C=\left\{-2;0;1;3\right\}\)

Nalumi Lilika
Xem chi tiết
truc my Nguyen
Xem chi tiết