Tìm n thõa mản 2 vế biết của n^2+3n-13 /n+1 và 6n-3/ 3n+1 x thuộc Z
cho biểu thức A = 6n -3 /3n+1(n thuộc Z)
a,Tìm GTNN và GTLN của biểu thức A
b, tìm n để biểu thức A có giá trị nguyên
c, tìm n để A là phân số
d, tìm phân số A biết n= -2
1. Cho n thuộc N . Tìm ƯCLN của
a, 2 số tự nhiên liên tiếp
b, 2n+1 và 3n+1
c, 2n+1 và 6n+5
d, 20n+1 và 15n+2
2. Tìm a,b thuộc N biết a.b =864 và ƯCLN (a,b)=60
3. Tìm n thuộc N để
a, 16-2n chia hết cho n-2
b, 5n-8 chia hết cho 4-n
4.Tìm a,b thuộc N biết a+b=66 , ƯCLN ( a,b ) =6 và 1 trong 2 số đó chia hết cho 5.
5. Biết a,b thuộc N , ƯCLN (a,b) =4 , a=8. Tìm b ( với a < b )
6.Cho a<b , a và b thuộc N ; ƯCLN (a,b) =16 và b =96 .Tìm a.
Tìm n thuộc n biết:
a. 3n + 7 chia hết cho n
b. 4n +9 chia hết cho 2n
c. 6n+ 11 chia hết cho 3n
d. 2n + 3 chia hết cho 3n + 1
Lưu ý; các bạn phải trình bày cả cách giải nha.
AI LÀM ĐÚNG VÀ ĐỦ SAU 3 PHÚT NHẬNNGAY 2 LIKE NHÉ!
Ta có:
A,3n +7 chia hết cho n ( đề bài)
Lại có: 3n chia hết cho n vì n nhân bất cứ số nào cũng chia hết cho n.(1)
Suy ra 7 chia hết cho n. Mà 7 chỉ chia hết cho 7 nên 3n+7 chia hết cho 7. (2)
Vậy ta có 3n +7 chia hết cho n.
Ta có:
B,4n chia hết cho 2n vì bất cứ số nào chia hết cho 4 cũng chia hết cho 2.
Mà 9 không chia hết cho 2n nên không tồn tại số tự nhiên n.
Phần c làm tương tự như phần b.
Phần d tớ chịu
C, 6n chia hết cho 3n vì bất cứ số nào chia hết cho 6 cũng chia hết cho 3.
Mà 11 không chia hết cho 3n nên không tồn tại số tự nhiên n
D, Mình không biết trình bày chỉ biết kết quả là 2 thui mong bạn thông cảm!
Mình trả lời hết rồi nhé!
Cho n thuộc Z,biết:n2+3n-13 chia hết cho n+3.Tìm giá trị nhỏ nhất của n
B1: Tìm x biết:
a) x+1/5 = 2x-7/3
b) x/4 = 9/x
B2: Tìm n Thuộc Z để:
a) 3n+4 chia hết cho n-2
b) 3n2 +4n-5 chia hết cho n+1
B3: Cho x,y,z nguyên dương:
CM: 1< x/x+y + y/y+z + z/z+x <2
Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)
\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)
\(\Leftrightarrow3x+3=10x-35\)
\(\Leftrightarrow3x-10x=-35-3\)
\(\Leftrightarrow-7x=-38\)
\(\Rightarrow x=\frac{38}{7}\)
Ta có : \(\frac{x}{4}=\frac{9}{x}\)
\(\Rightarrow x^2=9.4\)
=> x2 = 36
=> x = +4;-4
Để 3n + 4 chia hết cho n - 2
=> 3n - 6 + 10 chia hết cho n - 2
=> 3(n - 2) + 10 chia hết cho n - 2
=> 10 chia hết cho n - 2
=> n - 2 thuộc Ư(10) = {-10;-5;-2;-1;1;2;5;10}
Ta có bảng :
n - 2 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
n | -8 | -3 | 0 | 1 | 3 | 4 | 7 | 12 |
Bài1
a. x=1/4+-2/13; x/-3=-2/3+1/7; x=7/-25+1/5
b. x=5/11+4/-9;5 /9+x/-1=-1/3; x+7/12=7/18-1/8
Bài 2
Cho phân soosA=6n-1/3n+3
a. Tìm n thuộc Zđể A là phân số
b. Tìm số nguyên n để A có giá trị là số nguyên
c. Tìm n thuộc Z để A có giá trị nhỏ nhất
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
bài 1 ) tìm 2 phân số có tử = 9 biết giá trị của mỗi phân số đó lớn hơn -11/13 và nhỏ hơn -11/15
bài 2) cho M = x^2 -5/x^2 -2 (x thuộc Z ). Tìm x thuộc Z để M là số nguyên
bài 3 ) cho 6 số nguyên dương a<b<c<d<m<n
chứng minh rằng a+c+m/a+b+c+d+m+n<1/2
tìm n thuộc z biết
a , (4n+3) chia hết cho (2n-1) ; b(3n+1) chia hết cho (11 -2n),