Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mỹ Anh
Xem chi tiết
huỳnh sinh hùng
Xem chi tiết
Trần Đức Thắng
21 tháng 6 2015 lúc 9:47

a, UCNN (n , n+1) = 1 

b, UCLN( 3n+2, n+1) = 1

Nguyễn Nam Cao
21 tháng 6 2015 lúc 9:48

a, UCLN (n , n+1) = 1 

b, UCLN( 3n+2, n+1) = 1

Phan Hiếu
Xem chi tiết
Đặng Thị Thanh Tâm
Xem chi tiết
Nguyễn Linh Chi
30 tháng 11 2019 lúc 13:27

Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa
Nguyen Thi Thanh Thao
Xem chi tiết
Isolde Moria
5 tháng 8 2016 lúc 19:50

Goi ƯCLN(2n+1;3n+1) là d

=> \(3\left(2n+1\right)-2\left(3n+1\right)\) chia hết cho d

=> \(6n+3-6n-2\) chia hết cho d

=> 1 chia d

=> d\(\inƯ_{\left(1\right)}\)

=> d=1 ; d= - 1

Mà d lớn nhất

=> d=1

Huynh nhu thanh thu
5 tháng 8 2016 lúc 19:52

Đặt UCLN (2n+1 và 3n+1)=d

\(\Rightarrow\) 2n+1 chia hết cho d và 3n+1 chia hết cho d

\(\Rightarrow\) 6n+3 chia hết cho d và 6n+2 chia hết cho d

\(\Rightarrow\) 1 chia hết cho d

\(\Rightarrow\) d=1 \(\Rightarrow\)ƯCLN (2n+1 và 3n+1)=1hihi

 

Phan Hoang Long
5 tháng 8 2016 lúc 19:47

Gọi đ=UCLN(2n+1;3n+2)  2n+1 chia hết cho d và 3n+1 chia hết cho d         => 6n+3 chia hết cho d và 6n+2 chia hết cho d   => trừ nhau ta có 1 chia hết cho d. Vậy d=1 kết luận UCLN của ... =1 . (Dùng dấu ngoặc nhọn cho 2 vế cùng chia hết cho d.)

 

 

 

 

Hà Như Thuỷ
Xem chi tiết
Thắng Nguyễn
19 tháng 12 2015 lúc 18:42

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

Trần Khánh Vân
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 10 2015 lúc 9:22

 

Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d

=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d

=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}

=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7

pham the cuong
24 tháng 1 2018 lúc 20:27

Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}

Phan HAn
13 tháng 12 2018 lúc 12:52

Gọi ƯCLN hai số đó là D

=> 3n+1 :D và 5n+4 :D

=> 5.(3n+1):D và 3.(5n+4):D

=> 15.n+12 - 15.n+5 :D

=> 7:D 

=> D thuộc Ư<7>={1,7}

Anh Thư
Xem chi tiết
Đoàn Thùy Thảo
Xem chi tiết