c/m rằng trong 6 số TN bất kì luôn chọn đc 2 số có hiệu : hết cho 5
chứng minh rằng trong 6 số tự nhiên bất kì luôn tìm đc hai số có hiệu chia hết cho 5
Chứng minh rằng trong 7 số tự nhiên bất kì luôn chọn ra được 2 số có hiệu chia hết cho 6.
chứng tỏ rằng
a , trong 3 số tự nhiên bất kì bao giờ cũng chọn được 2 số có hiệu chia hết cho 2
b , trong 6 số tự nhiên bất kì bao giờ cũng chọn được 2 số có hiệu chia hết cho 5
a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0 hoặc 1
=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1.
=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2
b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...
Chứng minh rằng trong 8 số tự nhiên bất kì luôn chọn ra được 2 số có hiệu chia hết cho 7.
Cho 9 số nguyên bất kì. Chứng minh rằng ta luôn luôn chọn đc 5 số từ 9 số đó sao cho tổng 5 số được chọn chia hết cho 5
bạn lên mạng coi có nhiều bài tương tự á
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
Chứng MInh rằng trong ba số tự nhiên bất kì luôn chọn đc hai số có tổng chia hết cho 2
help me !
chẳng hạn như 11;12;13
lấy 11 + 13 = 24 chia hết cho 2
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Chứng minh rằng trong n+1 STN bất kì luôn có thể tìm đc 2 số cs hiệu của chúng chia hết cho n
trong phép chia 1 số cho n có n số dư từ 0 đên n-1. có n+1 số NT chia cho n, theo nguyên lí Dirichlet, có ít nhất 2 số trong n+1 số này chia cho n có cùng 1 số dư nên hiệu của 2 số này chia hết cho n
Bn nào thông minh xinh đẹp, đẹp trai dễ thương, học giỏi, chăm chỉ giải cho mk bài này mk k cho !