21y+22y+23y=6600 tim y
giải hpt:
\(\hept{\begin{cases}33x+23y-\sqrt{x}+5=1920\\13y+22y-39=1029\end{cases}}\)
Tìm nghiệm của phương trình
a.\(5x-18y=29\)
b.\(6x-21y=11\)
c.\(15x+2y=7\)
d.\(185x+22y=37\)
e.\(8x+21y=32\)
Tim GTNN
x^2-4x^y cộng 5y^2 cộng 10x-22y cộng 28
\(x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(2y-x-5\right)^2+\left(y-1\right)^2+2\)
Ta có :
\(\left(2y-x-5\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2y-x-5\right)^2+\left(y-1\right)^2+2\ge2\forall x\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=0\\\left(2y-x-5\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=0\\2y-x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-3\end{matrix}\right.\)
Vậy biểu thức đạt GTNN = 2 ⇔ \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Tính giá trị của biểu thức sau:
a) A=\(x^{100}-21x^{99}-21x^{98}-21x^{97}-...-21x^2-21x+2010\) với x=22
b) B=\(y^{200}-21y^{199}+21y^{198}-2y^{197}+...+21y^2-21y+21\) với y=20
a) ta có : \(N=-21x^{99}-21x^{98}-...-21x^2-21x\)
\(\Rightarrow xN=-21x^{100}-21x^{99}-...-21x^2-21x^2\)
\(\Rightarrow xN-N=-21x^{100}+21x\)
\(\Leftrightarrow\left(x-1\right)N=-21x^{100}+21x\Leftrightarrow N=\dfrac{21x-21x^{100}}{x-1}\)
\(\Rightarrow A=x^{100}-21x^{99}-21x^{98}-...-21x^2-21x+2010\)
\(=x^{100}+\dfrac{21x-21x^{100}}{x-1}+2010\)
\(=\dfrac{21x-21x^{100}+x^{101}-x^{100}+2010x-2010}{x-1}\)
\(=\dfrac{x^{101}-22x^{100}+2031x-2010}{x-1}\)
thay \(x=22\) ta có : \(A=\dfrac{22^{101}-22.22^{100}+2031.22-2010}{22-1}\)
\(=\dfrac{22^{101}-22^{101}+2031.22-2010}{21}=\dfrac{2031.22-2010}{21}=2032\)
vậy ............................................................................................................
câu b lm tương tự .
Tim GTNN của biểu thưc
`C=x^2-4xy+5y^2 +10x -22y+28`
Y³-Y²-21Y+45=0
y^3 - y^2 - 21y + 45 = 0
<=> y^3 - 3y^2 + 2y^2 - 6y - 15y + 45 = 0
<=> y^2(y - 3) + 2y(y - 3) - 15(y - 3) = 0
<=> (y^2 + 2y - 15)(y-3) = 0
<=> (y^2 + 5y - 3y - 15)(y - 3) = 0
<=> [y(y+5) - 3(y-5)](y-3) = 0
<=> (y-3)(y+5)(y-3) = 0
<=> y- 3 = 0 hoặc y + 5 = 0
<=> y = 3 hoặc y = -5
a,giai pt (x-3/x-2)^3-(x-3)^3=16
b,tim nghiem nguyen cua pt: 8x^2+23y^2+16x-44y-1180=0
tim gia tri nho nhat
A=\(2x^2+2xy+5y^2-22y-8x\)
1 tim gtln hoac gtnn cua bt
B=x2-4xy+5y2+10x-22y+28
GTNN nak !!!
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)
\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
tim gia tri nho nhat cua bieu thuc B=x2- 4xy +5y2-22y+28
= x^2-4xy+4y^2+y^2-22y+121-93
=(x+2y)^2+(y-11)^2>=-93
GNNN là -93
Ta có: \(B=x^2-4xy+5y^2-22y+28\)
\(=x^2-4xy+y^2-22y+121-93\)
\(=\left(x-2y\right)^2+\left(y-11\right)^2-93\)
Vì \(\left(x-2y\right)^2\ge0;\left(y-11\right)^2\ge0\)
\(\Rightarrow B\ge-93\)
Dấu "=" xảy ra khi \(y-11=0\Rightarrow y=11\)
\(x-2y=0\Rightarrow x-2.11=0\Rightarrow x=22\)
Vậy Bmin=-93 khi x=22; y=11