chứng tỏ rằng: số ab + ba chia hết cho 11
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab
1. Chứng tỏ rằng: ab + ba chia hết cho 11
Chứng tỏ rằng: ab - ba chia hết cho 9
2. Chứng tỏ rằng: Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
3. Chứng tỏ rằng: Tổng của 3 số tự nhiên liên tiếp là một số không chia hết cho 4
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
1. Ta có: ab + ba = 10a +b + 10b +a= 11a + 11b
= 11 ( a + b) \(⋮11\)
Ta có: ab - ba = 10a +b - (10b + a) = 10a +b -10b -a
= 9a - 9b = 9 (a-b) \(⋮9\)
2. Gọi 3 số tự nhiên liên tiếp là x; x+1; x+2
Ta có: x + x+1 +x +2= (x + x+x) + (1 +2)
= 3x + 3 = 3 ( x+1) \(⋮3\)
chứng tỏ rằng a+b chia hết cho 2
chứng tỏ rằng ab+ba chia hết cho 11
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm
Chứng tỏ rằng ab+ba là 1 số chia hết cho 11
ab + ba = 10a + b + 10b + a = ( 10a + a ) + ( 10b + b ) = 11a + 11b = 11 ( a+b )
Mà 11 chia hết cho 11
=> ab + ba chia hết cho 11 ( đpcm )
Bài giải
Ta có: ab + ba = 10a + b + 10b + a *10a + b + 10b + b = 10a + a + 10b + b*
= 11a + 11b
= 11(a + b)
Vì 11(a + b) \(⋮\) 11
Nên ab + ba \(⋮\)11
Vậy...
Ta có: ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11( a + b)
Suy ra 11( a + b) \(⋮\)11
Vậy ab + ba \(⋮\)11
hok tốt!!!
cho a =(x+2009) .(x+2010) .Chứng minh rằng :a chia hết cho 2 ,với x là số tự nhiên
2 . Chứng tỏ rằng (ab) ̅ +(ba) ̅chia hết cho 11 với ab và ba là 2 số tự nhiên
a= (x+2009)(x+2010)
Vì x là stn chia hết cho 2
---> x+2009 là stn lẻ, còn x+2010 là stn chẵn.
Mà LẺ × CHẴN = CHẴN --> (x+2009)(x+2010) chia hết cho 2.
(ab) + (ba) với ab và ba là 2stn
( Mình ko ghi dấu gạch trên đầu vì nó rách việc quá mà mình sẽ ghi A và B nên mong bạn thông cảm)
Ta có:(AB) + (BA) = (10A+B) + (10B+A)
= (10A+A) + (10B+B)
= 11A + 11B
Chúng chia hết cho 11 --->(AB) +(BA) chia hết cho 11
cho a =(x+2009) .(x+2010) .Chứng minh rằng :a chia hết cho 2 ,với x là số tự nhiên
2 . Chứng tỏ rằng (ab) ̅ +(ba) ̅chia hết cho 11 với ab và ba là 2 số tự nhiên
có x+2009 và x+2010 là 2 số liên tiếp => 1 số là chẵn và một số là lẻ
mà 1 số chẵn nhân với 1 số lẻ luôn ra một số chẵn (cái này không cần phải chứng minh)
=> a luôn chia hết cho 2
https://olm.vn/hoi-dap/question/845606.html
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab.
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11