Viết tập hợp các giá trị nguyên A = 3x + 5/ 2 + x đạt giá trị nguyên
Tập hợp các giá trị x nguyên để A = \(\frac{3x+5}{2+x}\)đạt gía trị nguyên là S = {...} ( Nhập các giá trị theo thứ tự tăng dần cách nhau bởi dấu ";"
\(A=\frac{3x+5}{2+x}=\frac{3x+6-1}{x+2}=\frac{3\left(x+2\right)-1}{x+2}=3-\frac{1}{x+2}\)
Để \(3-\frac{1}{x+2}\) là số nguyên <=> \(\frac{1}{x+2}\) là số nguyên
=> x + 2 thuộc ước của 1 là - 1; 1
Ta có : x + 2 = - 1 => x = - 1 - 2 = - 3 (TM)
x + 2 = 1 => x = 1 - 2 = - 1 (TM)
Vậy x = { - 3; - 1 }
A=\(\frac{3x+5}{x+2}=\frac{3x+6-1}{x+2}=\frac{3\left(x+2\right)}{x+2}-\frac{1}{x+2}\)
=> A=\(3-\frac{1}{x+2}\)
Để A nguyên thì 1 phải chia hết cho (x+2) => x+2=-1 và x+2 =1
=> x={-3; -1}
+/ x=-3 => A=\(3-\frac{1}{-3+2}=3+1=4\)
+/ x=-1 => A=\(3-\frac{1}{-1+2}=3-1=2\)
ĐKXĐ: x khác -2
thực hiện phép chia ta có \(A=3-\frac{1}{2+x}\)
Vậy để A nguyên thì: 2+x phải thuộc ước của 1
=> 2+x=-1;1
nếu 2+x=-1 thì x=-3(TM ĐKXĐ)
nếu 2+x=1 thì x=-1 (TM ĐKXĐ)
Tìm tập hợp các số nguyên x để \(\frac{3x+5}{x+2}\)đạt giá trị nguyên
Ta có:
\(\frac{3x+5}{x+2}\)đạt giá trị nguyên
\(\Rightarrow\)3x+5 \(⋮\)x+2
\(\Rightarrow\) 3(x+2) -1 \(⋮\)x+2
\(\Rightarrow\)1 \(⋮\) x+2
\(\Rightarrow\)x+2= -1\(\Rightarrow\)x=-3
x+2= 1 \(\Rightarrow\)x=-1
Vậy x= -3;-1
Chúc bạn làm bài tốt
1.Tập hợp các số nguyên x thỏa mãn x.(x+2)= 15 là {.......}
2. Tập hợp các giá trị nguyên của x để biểu thức A= x-3/1-x đạt giá trị nguyên là {......}
tập hợp các giá trị x nguyên để A =\(\frac{3x+5}{2+x}\)để giá trị nguyên là S ={...}
Ta có :
\(A=\frac{3x+5}{2+x}=\frac{3x+6-1}{2+x}=\frac{3.\left(x+2\right)-1}{2+x}=3-\frac{1}{2+x}\)
để S có giá trị nguyên thì \(\frac{1}{2+x}\in Z\)
\(\Rightarrow\)2 + x \(\in\)Ư ( 1 ) = { 1 ; -1 }
\(\Rightarrow\)x = -1 ; x = -3
khi đó : S = { -1 ; -3 }
Để A nguyên thì
\(3x+5⋮2+x\)
\(3.\left(2+x\right)-1⋮2+x\Rightarrow1⋮2+x\)
\(\Rightarrow2+x\inƯ\left(1\right)=\left\{-1;1\right\}\)
2+x | -1 | 1 |
x | -3 | -1 |
Vậy \(x\in\left\{-3;-1\right\}\)
Số x nguyên để biểu thức D = |x + 1,5| + | x - 2| đạt giá trị nhỏ nhất. Viết tập hợp các giá trị của x
1) Tập hợp các giá trị x thỏa mãn: x/-4=-9/x là
2) Số giá trị x thỏa mãn 2x/42=28/3x là
3) Tập hợp các giá trị x nguyên để biểu thức D = l2x +2,5l + l2x-3l đạt giá trị nhỏ nhất là {}
Viết tập hợp các giá trị x nguyên để biểu thức D = |2x + 2,5| + |2x - 3| đạt giá trị nhỏ nhất
\(D=\left|2x+2,5\right|+\left|2x-3\right|=\left|2x+2,5\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) với \(xy\ge0\)
=>\(D=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=\left|5,5\right|=5,5\)
với \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
=>Dmin=5,5 khi \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
Lập bảng xét dấu:
x | -1,25 1,5 |
2x+2,5 | - 0 + | + |
3-2x | + | + 0 - |
(2x+2,5)(3-2x) | - 0 + 0 - |
Dễ thấy \(-1,25\le x< 1,5\) thỏa mãn \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Dmin=5,5 khi \(x\in\left\{-1;0;1\right\}\)
Có: \(\hept{\begin{cases}\left|2x+2,5\right|\ge2x+2,5\\\left|2x-3\right|\ge3-2x\end{cases}}\) với mọi x
=> \(D=\left|2x+2,5\right|+\left|2x-3\right|\ge\left(2x+2,5\right)+\left(3-2x\right)\)
hay \(D\ge5,5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2,5\ge0\\2x-3\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x\ge-2,5\\2x\le3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge\frac{-5}{4}\\x\le\frac{3}{2}\end{cases}}\)\(\Rightarrow\frac{-5}{4}\le x\le\frac{3}{2}\)
Mà x nguyên => \(x\in\left\{-1;1;0\right\}\)
Vậy...
tìm các giá trị nguyên thỏa mãn 3x+5/x+2 đạt giá trị nguyên
\(\frac{3x+5}{x+2}=\frac{3\left(x+2\right)-1}{x+2}=3-\frac{1}{x+2}\in Z\)
=> \(x+2\inƯ\left(1\right)=\left\{1;-1\right\}\)
=> \(x=\left\{-1;-3\right\}\)
Vậy.......
Để \(\frac{3x+5}{x+2}\)có giá trị nguyên thì : \(3x+5⋮x+2\)
=> (3x + 5) - 3.(x + 2) \(⋮\)x + 2
=> 3x + 5 - 3x - 6 \(⋮\)x + 2
=> - 1 \(⋮\)x + 2
=> x + 2 là Ư(1)
Mà 1 có 2 Ư là 1 và -1
=> x + 2 \(\in\){1 ;-1}
=> x \(\in\){-1 ;- 3}
Để x + 2 3x + 5 có giá trị nguyên thì : 3x + 5⋮x + 2 => (3x + 5) - 3.(x + 2) ⋮ x + 2 => 3x + 5 - 3x - 6 ⋮ x + 2 => - 1 ⋮ x + 2 => x + 2 là Ư(1) Mà 1 có 2 Ư là 1 và -1 => x + 2 ∈ {1 ;-1} => x ∈ {-1 ;- 3}
Số x nguyên tố để biểu thức D = |x + 1,5| + |x - 2| đạt gái trị nhỏ nhất. Viết tập hợp các giá trị của x