Chứng tỏ rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
chứng tỏ rằng:
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{n^2+\left(n+1\right)^2}\) < \(\frac{1}{2}\)
Chứng minh
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+....+\frac{1}{10^2+11^2}<\frac{9}{20}\)
đơn giải thôi nhưng mình ko bấn fx đc
xét vế trái : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
chứng tỏ rằng :\(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)
Đặt vế trái của Bất đẳng thức la A
\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)
\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)
Ta thấy: \(\frac{1}{8}< \frac{1}{2}\)
\(\frac{1}{11}< \frac{1}{2}\)
\(\frac{1}{12}< \frac{1}{2}\)
\(\frac{1}{13}< \frac{1}{2}\)
\(\frac{1}{41}< \frac{1}{2}\)
\(\frac{1}{42}< \frac{1}{2}\)
\(\frac{1}{43}< \frac{1}{2}\)
=> \(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)
Chứng tỏ rằng:
A=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Thì 1<A<2
Mk cần giải bài này:
Bài 1: Chứng minh rằng
a) B= 3/10 + 3/11 + 3/12 + 3/13 + 3/14 ko phải là số tự nhiên.
b) C=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}.\) Chứng tỏ \(\frac{2}{5}< C< \frac{8}{9}\)
Mk cần trước 23 h nha. Ai nhanh mk cho 3 k
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??
a)\(\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{5}\right)+\left(\frac{-9}{11}+\frac{4}{5}\right).\frac{5}{7}\) b)\(2\frac{2}{5}.\frac{5}{9}+1\frac{4}{9}.\frac{12}{5}-1,8.\frac{10}{3}\)c)\(\frac{-7}{25}.\frac{11}{13}+\frac{-7}{25}.\frac{4}{13}-\frac{2}{13}.\frac{-7}{25}\)
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)
Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A>1
Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Bài 6: Chứng tỏ rằng
D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1
Bài 7:
C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)
Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm
Trần Quốc An: Em hãy tách bài ra để dễ trả lời hơn nhé. Em gửi từng bài đi để cô hướng dẫn :)
chứng minh rằng \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2016^2+2017^2}<\frac{1}{2}\)