cho tam giác có AB=AC. D là trung điểm BC. tù A kẻ đưởng thẳng d. chứng mình d vuông góc AD
cho tam giác ABC tại A có AB =AC . gọi D là trung điểm của Bc
a] chứng minh tam giác ADB= tam giác ABC
b] chứng minh AD vuông góc với AC
c] Từ C kẻ đường thẳng vuông góc với Bc cắt AB tại E . chứng minh EC song song AD
d] Chứng minh CE= CB
Giúp mình nha
Cho tam giác ABC vuông cân tại A, biết AB=AC=4cm
a. Tính BC
b. Từ A kẻ đường thẳng vuông góc với BC tại D. Chứng minh D là trung điểm của BC.
c. Từ D kẻ DE vuông góc với AC. Chứng minh tam giác AED là tam giác vuông cân.
d. Tính AD
Giúp mình với nha mình đang cần gấp!!!
bạn tự vẽ hình nha
a) Áp dụng định lí Py-ta-go trong tam giác ABC vuông tại A ta có:BC2=AC2+AC2=>BC2=42+42=>BC2=32=>BC=\(\sqrt{32}\)(cm) Vậy BC=
\(\sqrt{32}\)(cm) b)Xét tam giác ABD và tam giác ACD có :góc ADB=góc ADC=90 độ
AD là cạnh chung
AB=AC(vì tam giác ABC cân ở A)
Do đó tam giác ABD=tam giác ACD(cạnh huyền-cạnh góc vuông)
=>BD=CD(2 cạnh tương ứng)
Mà điểm D nằm giữa 2 điểm C và B nên D là trung điểm của đoạn thẳng BC
c)Trong tam giác ABC vuông tại A có D là trung điểm của cạnh BC nên AD là trung tuyến ứng với cạnh huyền=>AD=BD=CD
=>tam giác BAD cân ở D =>góc DAE=góc DBE
Xét tam giác DAE và tam giác BED có: góc DAE=góc DBE(chứng minh trên)
góc DEA=góc BED=90 độ
AD=BD
=>tam giác DAE= tam giác BED (cạnh huyền-góc nhọn)
=>AE=ED( 2 cạnh tương ứng)
=>tam giác AED cân ở E mà DE vuông góc với AB nên tam giác AED là tam giác vuông cân
d)Theo câu a BC=\(\sqrt{32}\)(cm)mà D là trung điểm của BC nên BD=CD=BC/2=\(\sqrt{32}\)/2=2\(\sqrt{2}\)(cm)
THeo câu c AD=CD=BD nên AD=\(2\sqrt{2}\)cm
chọn giùm mình nha mình mới tham gia nên không biết sử dụng để vẽ hình thông cảm
kho09ur8736489uit
Cho tam giác ABC vuông cân tại A, biết AB = AC = 4cm
a) Tính độ dài BC
b) Từ A kẻ AD vuông góc với BC. Chứng minh D là trung điểm của BC
c) Từ D kẻ DE vuông góc với AC. Chứng minh tam giác AED là tam giác vuông cân
d) Tình độ dài đoạn thẳng AD
1) Cho tam giác ABC có góc A tù. Trong góc A vẽ đoạn thẳng AD,AE sao cho AD vuông góc và bằng AB, AE vuông góc và bằng AC. Gọi M là trung điểm của DE. Chứng minh AM vuông góc với BC.
2) Cho tam giác đều ABC, một đường thẳng song song với BC cắt AB,AC ở D,E. Gọi G là trọng tâm của tam giác ADE, O là trung điểm CD. Tính góc GOB
cho tam giác ABC vuông tại A có AB=5cm, AC=12cm
a)Tính BC
b) Kéo dài AB lấy D sao cho B là trung điểm của AD. Nối CD, qua B kẻ đường thẳng vuông góc với AD cắt CD tại E. CHứng minh: tam giá ABE=tam giác DBE từ đó suy ra tam giá AED cân
c) kẻ đường thẳng AK vuông góc với BC tại K. Qua D kẻ đường thẳng vuông góc với CB tại F. Chứng minh B là trung điêm rcủa KF
d) Chứng minh tam giác AEC cân từ đó suy ra E là trung điểm của DC
Cho tam giác ABC có góc BAC tù thỏa mãn hệ thức AB^2-AC^2=BC^2/2. Gọi D là điểm trên cạnh AB sao cho BC=2CD. Từ D kẻ đường thẳng vuông góc với AB cắt đường thẳng AC tại E, K là giao điểm của CD và BE. Chứng minh rằng K là trung điểm
Cho tam giác ABC vuông tại A có AB=5cm, AC=12cm
a) Tính BC.
b) Kéo dài AB lấy D sao cho B là trung điểm của AD. Nối CD, qua B vẽ đường thẳng vuông góc với AD cắt CD tại E. Chứng minh tam giác ABE=tam giác DBE và suy ra tam giác AED cân.
c) Kẻ AK vuông góc với BC tại K. Qua D kẻ đường thẳng vuông góc với đường thẳng BC tại F. Chứng minh B là trung điểm của KF.
d) Chứng minh tam giác AEC cân và suy ra E là trung điểm của DC.
@Minh Hieu Dang ơi
Mình chưa học cái đó nha =((
a) Xét tam giác ABC vuông tại A có:
BC là cạnh huyền
=>BC2 =AB2+AC2
mà AB= 5cm
AC= 12cm
=> BC2= 52+122
=>BC2=25+144
BC2=169
BC=13
b) Ta có:
EB vuông góc với AD
=> Góc DBE= Góc ABE=90 độ
Xét tam giác ABE và tam giác DBE có:
DB=AB(B là trung điểm của AD)
Góc DBE= Góc ABE (=90 độ)
BE (chung)
=>Tam giác DBE= Tam giác ABE(c-g-c)
=>AE=DE(2 cạnh tương ứng)
=> Tam giác AED cân tại E
c) Xét tam giác BKA vuông tại K và tam giác BFD vuông tại F có:
BD=BA(B là trung điểm của AD)
DBF=ABK (2 góc đối đỉnh)
=>Tam giác BKA= Tam giác BFD(ch-gn)
=>BF=BK( 2 cạnh tương ứng)
=> B là trung điểm của KF
cho tam giác ABC cân tại A .gọi D là trung điểm BC, từ D kẻ DE vuông góc với AB,DF vuông góc với AC . Chứng minh rằng :
a)Tam giác ABD=tam giác ACD
b)AD vuông góc BC
c) cho AC= 10 cm ; BC=12cm.tính AD ?
d) chứng minh tam giác DEF cân
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
Cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH và đường trung tuyến AD (H,D thuộc BC)
a) Tính độ dài đoạn thẳng BC, AD
b) Chứng minh AH2 = HB.HC
c) Qua A kẻ đương thẳng d vuông góc với AD, qua B kẻ đường thẳng d' vuông góc với BA. Gọi M là giao điểm của d và d', E là hình chiếu của B trên AM. Chứng minh góc ABE = góc BAD và tam giác ABC đồng dạng với tam giác EMB
d) Gọi N là giao điểm của AD và MB, F là giao điểm của DM và AB. Chứng minh E, F, N thẳng hàng.