Cho các số a,b,c khác 0 thoả mãn:ab/a+b=ac/a+c=bc/b+c
Tính P= ab^2+bc^2+ac^2/ a^3+b^3+c^3
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15
Cho a,b,c khác 0 thoả mãn: a+b+c= ab+ac/2=bc+ba/3=ca+cb/4
cho ab,bc (c khác 0) là các số có 2 chữ số thoả mãn điều kiện ab/a+b=bc/b+c. Chứng minh rằng b^2=ac
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
<=> \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
<=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
<=> \(\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
<=> ab + ac = ba + b2
=> ac = b2 (đpcm)
Bài 1: Choa;b;c là các số khác 0 và a^2= bc; b^2= ab; c^2=ac.Cmr a=b=c
Bài2: Cho a;b;c là các số khác 0 thỏa mãn ab+ac/2=bc+ba/3=ca+cb/4. Chứng tỏ : a/3= b/5=c/15
Cho a, b, c là các số khác 0 thỏa mãn: ab + ac + bc = 0. Tính giá trị biểu thức M = 1/3(ab/c^2 + ac/b^2 + bc/a^2)
Cho a,b,c là các số nguyên khác 0 thoả mãn ab-ac+bc-c^2=-1. Khi đó a/b=....
Cho \(B=\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ac}\) .Với a,b,c là các số khác nhau thoả mãn a+b+c=2016 .
Tính giá trị của B ?? Mong m.n giúp đỡ ạ !!
chào bạn còn nhớ mình ko bai nay o vong 15 luyen thi phai ko. Bạn phân tích từ số thành nhân tử
B=(a+b+c)(a^2 + b^2 + c^2 -ab-bc-ac)/a^2 +b^2 +c^2 -ab-bc-ac
suy ra B=a+b+c. suy ra B=2016
Vòng 15 thi chính lun pạn à !! Dù sao cũng mơn nghen !!
Cho các số a, b, c thoả mãn 1 >= a, b, c>= 0
Chứng minh rằng: a+b2+c3-ab-bc-ac =<1
cho các số a,b,c khác 0 thõa mãn ab/a+b= bc/b+c=ac/a+c
tính giá trị ab+bc+ac/a^2+b^2+c^2
Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)
\(\iff\) \(ac+bc=ab+ac=bc+ba\)
+)\(ac+bc=ab+ac\)
\(\implies\)\(bc=ab\)
\(\implies\) \(c=a\left(1\right)\)
+)\(ab+ac=bc+ba\)
\(\implies\) \(ac=bc\)
\(\implies\) \(a=b\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\implies\) \(a=b=c\)
\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Vậy \(M=1\)