A = (15 : x + 15 x X ) +1991 +y
A = [15 : x + 15 x X] + 1991 + y với y =0 ;x=1
Tính giá trị của biểu thức
A = [15 : x + 15 x X] +1991+y
(15 :X +15 x X) + 1991 x y
Tính giá trị của biểu thức sau, với x = 1 và y = 0 :
A = ( 15 : x + 15 \(\times\) x ) + 1991 \(\times\) y
a,x-10/1994+x-8/1996+x-6/1998+x-4/2000+x-2/2002=x-2002/2+x-2000/4+x-1998/6+x-1996/8+x-1994/10
b,x-1991/9+x-1993/7+x-1995/5+x-1997/3+x-1999/1=x-9/1991+x-7/1993+x-5/1995+x-3/1997+x-1/1999
c,x-1/13-2x-13/15=3x-15/27-4x-27/29
1 tính nhanh
a, 7/19 x 1/3 + 7/19 x 2/3 b , 15 x 2121/4343 + 15 x 212121/434343 c, 1991/1990 x 1992/1991 x 1993/1992 x 1994/1993 x 995/994
b, [ 1 - 3/4 ] x [ 1 - 3/7 ] x [ 1 -3/10 ] x [ 1 - 13 ] x .........x [ 1 - 3/97 ] x [ 1 - 3/100 ]
có lời giải nha các bạn
Bài 1
a; \(\dfrac{7}{19}\) x \(\dfrac{1}{3}\) + \(\dfrac{7}{19}\) x \(\dfrac{2}{3}\)
= \(\dfrac{7}{19}\) x (\(\dfrac{1}{3}+\dfrac{2}{3}\))
= \(\dfrac{7}{19}\) x 1
= \(\dfrac{7}{19}\)
b; 15 x \(\dfrac{2121}{4343}\) + 15 x \(\dfrac{212121}{434343}\)
= 15 x \(\dfrac{21}{43}\) + 15 x \(\dfrac{21}{43}\)
= 15 x \(\dfrac{21}{43}\) x (1 + 1)
= 15 x \(\dfrac{21}{43}\) x 2
= (15 x 2) x \(\dfrac{21}{43}\)
= 30 x \(\dfrac{21}{43}\)
= \(\dfrac{630}{43}\)
C; \(\dfrac{1991}{1990}\) x \(\dfrac{1992}{1991}\) x \(\dfrac{1993}{1992}\) x \(\dfrac{1994}{1993}\) x \(\dfrac{995}{994}\)
= \(\dfrac{1991\times1992\times1993\times1994\times995}{1991\times1992\times1993\times994\times995\times2}\)
= \(\dfrac{1994}{994\times2}\)
= \(\dfrac{997}{994}\)
Bài 2 tính nhanh a,15 x 2121/4343 + 15 x 222222/434343 b,399 x 45 + 55 x 399/1995 x 1996 - 1991 x 1995 c,1996 x 1995 - 996/1000 + 1996 x 1994 d,637 x 527 - 189/526 x 637 + 448 e,677 x 874 + 251/678 x 874 - 623 khẩn cấp huhuhu.......... aaaaaaaaaa
a, 15(21/43+22/43)=15.1=15
b, 399(45+55) / 1995(1996-1991)
=399.100 / 1995.5
=4
1 tìm x
a. x/15 = 2/5
b. 1/7 = 3/x
2 tìm số tự nhiên n để :1991 < 5 x n - 2 < 1999
1. a. Thực hiện phép tính: \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b. Tìm GTNN của bt \(A=\sqrt{\left(x-1990\right)^2}+\sqrt{\left(x-1991\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\)
\(A=\left|x-1990\right|+\left|1991-x\right|\ge\left|x-1990+1991-x\right|=1\)
\(A_{min}=1\) khi \(1990\le x\le1991\)