Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Đức Hùng
Xem chi tiết
Thân Cảnh Chương
19 tháng 12 2023 lúc 21:22

Em con quá non

nguyễn Ngọc Ánh
Xem chi tiết
Lan Anh
Xem chi tiết
Phat Vo
5 tháng 11 2018 lúc 19:26

\(<=> 9x^2-6x+1+(2x+1)^2+2(3x-1)(2x-1)\)

\(<=> 9x^2-6x+1+4x^2+4x+1+(6x-2)(2x-1)\)

 \(<=> 9x^2-6x+1+4x^2+4x+1+12x^2-6x-4x+2\) 

 \(<=> 25x^2-12x+4\)

Lan Anh
5 tháng 11 2018 lúc 20:47

có bạn nào có thể giúp mình giải câu b và d được không ạ mình cần gấp

Đào Ngọc Quý
Xem chi tiết
Đõ Phương Thảo
26 tháng 6 2020 lúc 17:16

a)\(\frac{-2n^3+n^2-5n}{2n+1}\)= \(\frac{-n^2\left(2n+1\right)+n\left(2n+1\right)-6n}{2n+1}\)=\(\frac{\left(2n+1\right)\left(2n-1\right)-6n}{2n+1}\)

=\(\left(n-n^2\right)-\frac{6n}{2n+1}\)=\(\left(n-n^2\right)-\frac{3\left(2n+1\right)-3}{2n+1}\)=\(\left(n-n^2\right)-3-\frac{3}{2n+1}\)

Để (-2n3+n2-5n)⋮(2n+1) thì n∈Z

⇒n∈Z thì (2n+1)∈Ư(3)=\(\left\{-1;-3;1;3\right\}\)

Ta có bảng sau:

2n+1 1 3 -1 -3
n 0 1 -1 -2

Vậy n=(0;1;-1;-2) thì (-2n3+n2-5n) chia hết cho (2n+1).

b)\(\frac{3n^3+10n^2-5}{3n+1}\)=\(\frac{n^2\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-4}{3n+1}\)

=\(\frac{\left(3n+1\right)\left(n^2+3n-1\right)-4}{3n+1}\)=\(\left(n^2+3n-1\right)-\frac{4}{3n+1}\)

Để (3n3+10n2-5)⋮(3n+1) thì n∈Z

⇒n∈Z thì (3n+1)∈Ư(4)=\(\left\{1;2;4;-1;-2;-4\right\}\)

Ta có bảng sau:

3n+1 1 2 4 -1 -2 -4
n 0 \(\frac{1}{3}\) 1 \(\frac{-2}{3}\) -1 \(\frac{-5}{3}\)

Vì n∈Z nên ta loại (\(\frac{1}{3}\) ;\(\frac{-2}{3}\); \(\frac{-5}{3}\)) .

Vậy n=(0;1;-1) thì (3n3+10n2-5) chia hết cho (3n+1).

chúc bạn học tốt ^_^

giang Hươngg
Xem chi tiết
cholathe
Xem chi tiết
Đoàn Đức Hà
22 tháng 1 2021 lúc 14:46

\(A=\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+...+\frac{1}{\left(2n-1\right).1}\)

\(A=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)

\(A=\frac{1}{2n}\left[\frac{1}{1}+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-1}+\frac{1}{1}\right]\)

\(A=\frac{1}{n}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)

\(\Rightarrow\frac{a}{b}=\frac{1}{n}\).

Khách vãng lai đã xóa
Lê Thụy Sĩ
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết
Nguyễn Tất Đạt
23 tháng 7 2018 lúc 19:10

\(B=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right).\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(B=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(B=\frac{-\sqrt{x}-1}{\sqrt{x}}\). Vậy ....

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 8 2019 lúc 5:39

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D

Nguyễn Khắc Quang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 3 2021 lúc 18:25

\(P=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)

ĐKXĐ : \(n\ne-1\)

\(=\frac{n^3+n^2+n^2+n-n-1}{n^3+2n^2+2n+1}=\frac{n^2\left(n+1\right)+n\left(n+1\right)-\left(n+1\right)}{\left(n^3+1\right)+2n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)

Với n nguyên, đặt ƯC( n2 + n - 1 ; n2 + n + 1 ) = d

=> n2 + n - 1 ⋮ d và n2 + n + 1 ⋮ d

=> ( n2 + n + 1 ) - ( n2 + n - 1 ) ⋮ d

=> n2 + n + 1 - n2 - n + 1 ⋮ d

=> 2 ⋮ d => d = 1 hoặc d = 2

Dễ thấy n2 + n + 1 ⋮/ 2 ∀ n ∈ Z ( bạn tự chứng minh )

=> loại d = 2

=> d = 1

=> ƯCLN( n2 + n - 1 ; n2 + n + 1 ) = 1

hay P tối giản ( đpcm )

Khách vãng lai đã xóa