cho tam giác ABC,góc B=45 độ,góc C=120 độ.Trên tia đối của CB lấy D sao cho CD=2BC.Tính ADB
Cho tam giác ABC có góc B=45 độ và góc C =120 độ.Trên tia đối của tia CB lấy điểm D sao cho CD=2CB.Tính góc ADB
Cho tam giác ABC có góc B =45 độ và góc C=120 độ.Trên tia đối của tia CB lấy D sao cho CD=2CB.Tính góc ADB
Kẻ hộ hình nha
Cho tam giác ABC có góc B=45 độ ; góc C=120 độ.Trên tia đối của tia CB lấy điểm CB lấy điểm D sao cho CD=2CB.Tính góc ADB.
làm cách nào ngắn dùm mik nha mik đang cần gấp
hello mother fuckerPhạm Phương Linhhuyen nguyen
cho tam giác ABC , góc B = 45 độ , góc C = 120 độ. trên tia đối của tia CB lấy điểm D sao cho CD = 2CB . tính góc ADB ?
Cho tam giác ABC có góc B =45 độ , góc C=120 độ .Trên tia đối của tia CB lấy điểm D sao cho CD=2Cb.Tính góc ADB
Ta có :
BAC+ABC+ACB=180(Theo định lí tổng 3 góc)
BAC+45+120=180
BAC =180-(120+45)
BAC = 15
Kẻ ED vuông góc với AC và vẽ điểm F sao cho C là trung điểm của BF
Ta có:
BCA = 120
=> ACD = 60(2 góc kề bù)
Vì tam giác CED vuông tại E
=> EN=CN=DN
Vậy tam giác ECD cân tại N Vi ACD = 60
=> ECD là tam giác đều
=> BC=CE(cm )
Tam giác BCE Cân tại C
EBD=30
Xét tam giác ECD vuông tại E có
EDB= 30 (tổng 3 góc)
Vậy EBD cân tại E
=> EB=ED ABE+EBD=ABD ABE+30=45
ABE= 15
hay BAC=15
=> BA=BE
Tam giác ABE cân tại E
Mà BE=BD
=> AE=DE
=> AED = 90
Tam giác AED vuông cân
EDA = 45 °
Tính BDA= 75°
Cho tam giác ABC,góc B=45 độ,góc C=120 độ.Trên đối tia CB lấy D;CD=2CB.Tính góc ADC
cho tam giác ABC có góc B=45 độ, góc A=15 độ.trên tia đối của CB lấy D sao cho CD=2BC,DE vuông góc với AC. CM EB=ED? tính góc ADB
Câu hỏi của HÀ nhi HAongf - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé.
Cho tam giác ABC có góc B =45 độ , góc C=120 độ .Trên tia đối của tia CB lấy điểm D sao cho CD=2Cb.Tính góc ADB
vẽ DE⊥CADE⊥CA. F là trung điểm của CD.
ta có FE là đường trung tuyến ứng với cạnh huyền của tam giác vuông CDE, nên
FE=CF=FD=BC=CD2FE=CF=FD=BC=CD2
do đó tam giác CFE cân.
đồng thời :180o−BCAˆ=FCEˆ⇒FCEˆ=60o180o−BCA^=FCE^⇒FCE^=60o
nên tam giác CFE đều. => CF=FE=CE
xét tam giác BFE và DCE có:
CE=FEFCEˆ=CFEˆ=60oBF=CD(BC=CF=FD)CE=FEFCE^=CFE^=60oBF=CD(BC=CF=FD)
do đó tam giác BFE = tam giác DCE (c-g-c)
FBEˆ=CDEˆ=900−600=300FBE^=CDE^=900−600=300
=> tam giác BED cân tại E, nên
BE=ED (1)
tam giác ABC : ABCˆ+ACBˆ+BACˆ=180o⇒CABˆ=1800−(ABCˆ+ACBˆ)=1800−1650=150ABC^+ACB^+BAC^=180o⇒CAB^=1800−(ABC^+ACB^)=1800−1650=150
đồng thời:
EBAˆ+FBEˆ=CBAˆ=450⇒EBAˆ=450−300=150EBA^+FBE^=CBA^=450⇒EBA^=450−300=150
nên EBAˆ=CABˆ=150EBA^=CAB^=150
do đó tam giác BEA cân tại E.
=> BE=AE (2)
từ (1) và (2) => ED=AE.
=> tam giác ADE cân tại E.
đồng thời tam giác ADE có DEAˆ=90oDEA^=90o
nên tam giác ADE là tam giác cân vuông.
⇒EDAˆ=DAEˆ=9002=45o⇒EDA^=DAE^=9002=45o
ta lại có: BDAˆ=CDEˆ+EDAˆ=30o+45o=75o
Cho tam giác ABC có góc B= 45 độ, góc C= 120 độ. Trên tia đối của tia CB lấy D sao cho CD=2CB.
Tính góc ADB
Kẻ đường cao AI xuống
ĐẶt CI=x thì BI=AI =\sqrt{3}x
suy ra BC=x(\sqrt{3}-1)
suy ra BD=3x(\sqrt{3}-1)
DI=2x(\sqrt{3}-1)-x=x(2\sqrt{3}-3)
suy ra AD=\sqrt{6}x(\sqrt{3}-1)
đến đây dùng máy tính bấm theo hàm số sin là được! Còn nếu không cho làm thế thì đến đây ta làm như sau: hạ đường cao DK thì \{BDK}=45 và DK =\frac{DB}{\sqrt{2}}=\frac{3x(\sqrt{3}-1...
suy ra \frac{DK}{AD}=\frac{\sqrt{3}}{2} suy ra \{KDA}=30
suy ra \{ADB}=45+30=75 :D