tìm x,y nguyên thỏa mãn x+y+xy=2
tìm các số nguyên x , y thỏa mãn đẳng thức :
\([(x-y)^2+2(xy+y^2-4y)]\)=xy+y2-4y
Tìm các cặp số nguyên x,y thỏa mãn:2(xy-3)=x
2.(xy - 3) = x
=> 2xy - 6 = x
=> 2xy - x = 6
=> x.(2y - 1) = 6
Vậy x và 2y -1 thuộc ước của 6
tới đây dễ rồi bạn nhé :D => bạn tự làm nhé, bye
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn:
(x+y+1)(xy+x+y) = 5+2(x+y)
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Tìm các cặp (x,y) ∈ Z thỏa mãn 2x+y-xy=5
Ta có \(2x+y-xy=5\Leftrightarrow xy-2x-y+5=0\Leftrightarrow x\left(y-2\right)-\left(y-2\right)+3=0\Leftrightarrow\left(x-1\right)\left(y-2\right)=-3\).
Ta có bảng:
x - 1 | 1 | 3 | -1 | -3 |
y - 2 | -3 | -1 | 3 | 1 |
x | 2 | 4 | 0 | -2 |
y | -1 | 1 | 5 | 3 |
tìm các số nguyên x;y thỏa mãn: x(y+2)-y=3
Ta có :
x(y + 2) - y = 3
xy + 2x - y = 3
xy - y + 2x - 2 = 3 - 2
(x - 1)y + 2(x - 1) = 1
(2 + y)(x - 1) = 1 = 1.1 = (-1).(-1)
Xét 2 trường hợp ,ta có :
\(\left(1\right)\hept{\begin{cases}2+y=1\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}}\)
\(\left(2\right)\hept{\begin{cases}2+y=-1\\x-1=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=0\end{cases}}}\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn :
x2 + xy - 2013x - 2014y - 2015 = 0
cho 2 số dương x,y thỏa mãn x+y<=1. tìm GTNN của biểu thức: P=1/(x^2+y^2) + 504/xy