Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Nguyễn
Xem chi tiết
s2 Lắc Lư  s2
24 tháng 3 2016 lúc 20:11

x+y+z=xyz+1

Giả sử x lớn hơn =y lớn hơn =z

=> 3x> xyz+1 >xyz

=> 3> yz

do y,z nguyên dương nnee tìm đc y,z

s2 Lắc Lư  s2
24 tháng 3 2016 lúc 21:35

bạn khó hiểu chỗ nào

Thảo Nguyễn
24 tháng 3 2016 lúc 21:40

Dòng cuối 

Nguyễn Anh Quân
Xem chi tiết
Huyền Anh
17 tháng 11 2017 lúc 21:12

mk ms hok lp 6 thoy nên ko biết làm 

tk mk nha

chúc các bn hok tốt !

lyli
17 tháng 11 2017 lúc 21:15

điêu thế làm sao 3 dc

Nhok_baobinh
17 tháng 11 2017 lúc 21:38

\(x^3-\left(y^3+z^3\right)=3xyz\)

\(\Rightarrow x^3-\left[\left(y+z\right)^3-3yz\left(y+z\right)\right]=3xyz\)

\(\Rightarrow x^3-\left(y+z\right)^3+3yz\left(y+z\right)=3xyz\)

\(\Rightarrow x^3-\left(y+z\right)^3=3yz\left[x-\left(y+z\right)\right]\)

\(\Rightarrow\left[x-\left(y+z\right)\right]\left[x^2+x\left(y+z\right)+\left(y+z\right)^2-3yz\right]=0\)

\(\Rightarrow\left[x-\left(y+z\right)\right]\left[x^2+x\left(x+y\right)+y^2+z^2-yz\right]=0\)

Mà \(x^2+x\left(x+y\right)+y^2+z^2-yz>0\)

\(\Rightarrow x=y+z\)

\(\Rightarrow\left(y+z\right)^2=2\left(y+z\right)\)

\(\Rightarrow\left(y+z\right)^2-2\left(y+z\right)=0\)

\(\Rightarrow\left(y+z\right)\left(y+z-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}y=z=1\\x=2\end{cases}}\)

Anh Trần
Xem chi tiết
Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Linh Hương
Xem chi tiết
Nhật Hạ
2 tháng 2 2019 lúc 10:39

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.  
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.  
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.  
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.  
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

P/s: Nguồn Mạng Oppa

»ﻲ♥maŽΩÖm♥
2 tháng 2 2019 lúc 10:39

o vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.  
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.  
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.  
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.  
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

cho mk nha

học tốt

Bảo Nam
2 tháng 2 2019 lúc 10:42

Trả lời :

x + y + z = xyz ( 1 )

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1

=> x = y = 1

Thay vào ( 1 ) ta có :

2 + z = z

2       = 0 ( vô lí ).
Nếu xy = 2 do x ≤ y

=> x = 1 và y = 2

Thay vào (1) ta có :

=> z = 3. 
Nếu xy = 3 do x ≤ y

=> x = 1 và y = 3 

Thay vào (1)

=> z = 2.

Vậy nghiệm nguyên dương của phương trình (1) là các hoán vị của (1 ; 2 ; 3).

Hok tốt

Nguyễn Thị Hằng
Xem chi tiết
Phạm Thế Bằng
24 tháng 2 2023 lúc 19:44

Truong_tien_phuong
Xem chi tiết
Forever Love You
24 tháng 5 2017 lúc 10:53

Ta gọi phương trinh của x+Y=Z = XYZ LÀ (2) .Do vai trò bình đẳng của x,y,z trong phương trình, trước hết ta xét x bé hơn hoặc = y < hoặc = z

VÌ x,y,z nguyên dương nên xyz khác 0 , do x , hoặc = y ,học = z => xyz= x+y+z < hoặc = 3z => xy <3 => x thuộc {1;2;3}

Nếu xy=1 => x=y=1 . Thay vào (2) ta có : 2+z =z ( vô lý)

nẾU XY=2 , Do x <  hoặc = y nên x=1,y=2 . tHAY VÀO (2) ta có ; z=3

NÊú xy =3 , do x , hoặc = y nên x=1, y=3. Thay vào (2) ta có , z=2

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1;2;3) 

TK MK NHA!!

Forever Love You
24 tháng 5 2017 lúc 10:55

MK LỚP 6 MÀ LÀM ĐƯỢC BÀI LỚP 7 ĐẤY

Nguyễn Văn Trung
Xem chi tiết
vu
14 tháng 8 2017 lúc 20:19

vế phải bạn ơi phương trình thì phải có dấu bằng chứ

Phan Thị Hà Vy
Xem chi tiết
e942
12 tháng 3 2017 lúc 18:24

X00+Y10+Z=XYZ

e942
12 tháng 3 2017 lúc 18:25

X00+Y0+Z=XYZ

Thái Thị Minh Trang
23 tháng 1 2021 lúc 21:01

Vì x,y,z nguyên dương

Ta giả sử 1<x<y<z

Từ x+y+z=xyz =>x+y+z/xyz=xyz/xyz

=>x/xyz=y/xyz=z/xyz

=>1/yz=1/xz=1/xy=1

Ta có : 1/yz+1/xz+1/yz<1/^2+1/x^2+1/x^2=3/x^2

=>1<3/^2=>x^2<3

Mà x dương => x=1

Thay vào x,y,z ta đc

1+y+z=1yz

yz-(1=y+z)=0

=> (yz-y)-(z-1)-2=0

=>y(z-1)-(z-1)=2

(z-1)*(y-1)=2       (1)

Theo giả sử 1<y<z => z-1>0 và y-1>0

Từ (1) ta có

TH1:

z-1=1=>z=2

y-1=2=>y=3

TH2:

z-1=2=>z=3

y-1=1=>y=2

Vậy có hai cặp nghiệm nguyê thỏa mãn (x,y,z)=(1,2,3);(1,3,2)

Tương tự bạn xét tiếp các trườn hợp như 1<y<z<x và 1<z<y<x