Cho b = 2 + 3³ + 3 + -3²⁰²¹
CMR 2B+3 là số chính phương
MỌI NGƯỜI GIÚP EM VỚI
Bài 1: CMR: \(4n^4+4n^3+6n^2+3n+2\:\)không là số chính phương \(\left(n\inℕ^∗\right)\)
Bài 2: Cho A là tích n số nguyên tố đầu tiên. CMR A+1 không là số chính phương \(n\ge2\)
Bài 3: Cho \(B=1.3.5...2017\). CMR 2B-1, 2B, 2B+1 không là số chính phương
cho 3 số nguyên a,b,c thỏa mãn 2a+b,2b+c,2c+a đều là số chính phương.biết rằng 1 trong 3 số chính phương trên chia hết cho 3.CMR: P=\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\) chia hết cho 81.
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
CHo B=3^1+3^2+3^3+...+3^100
Chứng tỏ 2B+3 không phải là số chính phương
b,Cho B=3^1+3^2+3^3+3^4+.....+3^100.Chứng minh 2B+3 không phải là số chính phương
CMR: Nếu a, b là các số tự nhiên thỏa mãn: 2*a2+a=3*b2+b thì a-b, 2a+2b+1, 3a+3b+1 là các số chính phương
Bài 1: Cho a+b=5. Tính
D= a^3+b^3+3ab(a^2+b^2)+6a^2b^2
Bài 2: Cho n€Z. CMR:
C=(n+1) (n+2) (n+3) (n+4) +1
E= n^2 +(n+1)^2 +n^2(n+1)^2
Là số chính phương
Bài 2 :
a) C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )
<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1
<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1
Đặt t = n2 + 5n + 5
Suy ra : C = ( t - 1 ).( t + 1 ) + 1
=> C = t2 - 1 + 1
<=> C = t2 hay C = ( n2 + 5n + 5 )2
Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương
( đpcm )
b) E = n2 + ( n + 1 )2 + n2 ( n + 1 )2
<=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2
<=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2
<=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2
<=> E = [ n( n + 1 ) + 1 ]2
<=> E = ( n2 + n + 1 )2
Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương
( đpcm )
Cho B=1+3+3^2+3^3+...+3^50
CMR B không phải là số chính phương
B = 3^0+3^1+......+3^50
3B=3^1+3^2+.....+3^51
2B=3^51-1
=3^50x3-1
=9^25x3-1
Vì luỹ thừa bậc lẻ của 9 luôn có tận cùng = 9 => tận cùng 2B= 6 => tận cùng B=3
Số chính phương chỉ có tận cùng là 0;1;4;5;6;9 nên B ko phải số chính phương (đpcm)
BÀI 1
CMR: MỘT SỐ CHÍNH PHƯƠNG HOẶC LÀ CHIA HẾT CHO 3 HOẶC LÀ CHIA 3 DƯ 1
BÀI 2
CMR: MỘT SỐ CHÍNH PHƯƠNG KHI CHIA CHO 4 CÓ SỐ DƯ KO THỂ NÀO LÀ 2 HOẶC 3.
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
Cho các số nguyên a và b sao cho a^2 + b^2 +9 = 29( ab + 3a +3b ). Cmr: a/3, b/3 là số chính phương.