Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Thanh Hường
Xem chi tiết
ctk_new
22 tháng 9 2019 lúc 16:41

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Kim Tuyết Hiền
Xem chi tiết
vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 5 2021 lúc 13:43

Ta có đánh giá sau với a không âm:

\(\dfrac{a}{1+a^2}\le\dfrac{36a+3}{50}\)

Thật vậy, BĐT tương đương:

\(\left(36a+3\right)\left(a^2+1\right)\ge50a\)

\(\Leftrightarrow\left(3a-1\right)^2\left(4a+3\right)\ge0\) (luôn đúng)

Tương tự: \(\dfrac{b}{1+b^2}\le\dfrac{36b+3}{50}\) ; \(\dfrac{c}{1+c^2}\le\dfrac{36c+3}{50}\)

Cộng vế: \(VT\le\dfrac{36\left(a+b+c\right)+9}{50}=\dfrac{9}{10}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Lê Thị Thục Hiền
19 tháng 5 2021 lúc 13:51

Ta chứng minh bđt phụ \(\dfrac{a}{1+a^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\)

Thật vậy bđt trên \(\Leftrightarrow\dfrac{-3a^2+10a-3}{10\left(1+a^2\right)}-\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\le0\)

\(\Leftrightarrow\left(a-\dfrac{1}{3}\right)\left[\dfrac{3\left(3-a\right)}{10\left(1+a^2\right)}-\dfrac{18}{25}\right]\le0\)

\(\Leftrightarrow-\dfrac{36\left(a-\dfrac{1}{3}\right)^2\left(\dfrac{3}{4}+a\right)}{50\left(1+a^2\right)}\le0\) ( luôn đúng với mọi \(a\)\(\ge\)0)

Tương tự cũng có:\(\dfrac{b}{1+b^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(b-\dfrac{1}{3}\right)\)\(\dfrac{c}{1+c^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(c-\dfrac{1}{3}\right)\)

Cộng vế với vế => VT\(\le\dfrac{9}{10}+\dfrac{18}{25}\left(a+b+c-1\right)=\dfrac{9}{10}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)

 

 

phạm thanh nga
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 3 2020 lúc 23:13

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )

Vậy.......

Khách vãng lai đã xóa
Nguyễn Mai Anh
Xem chi tiết
ngo van khanh
Xem chi tiết
an nam
Xem chi tiết
Trần Tuấn Hoàng
30 tháng 3 2022 lúc 20:48

\(a+\dfrac{1}{a}=\dfrac{a^2+1}{a}\ge\dfrac{2a}{a}=2;b+\dfrac{4}{b}=\dfrac{b^2+4}{b}\ge\dfrac{4b}{b}=4;c+\dfrac{9}{c}=\dfrac{c^2+9}{c}\ge\dfrac{6c}{c}=6\)

\(a+b+c+\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}=\left(a+\dfrac{1}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{9}{c}\right)\ge2+4+6=12\)

 

vvvvvvvv
Xem chi tiết
Nguyễn Thị Ngọc Thơ
3 tháng 6 2019 lúc 22:17

Áp dụng BĐT Cauchy-Schwarz dạng phân thức cho các số không âm:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(''=''\Leftrightarrow a=b=c\)

Cà Bui
3 tháng 6 2019 lúc 22:51

Trình bày như vậy khó lắm nếu bn ấy chưa tìm hiểu

BĐT

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=9\)( do a,b,c>0)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}+\frac{\left(b-c\right)^2}{bc}+\frac{\left(a-c\right)^2}{ac}\ge0\)(đúng)

•๖ۣۜUηĭɗεηтĭƒĭεɗ
Xem chi tiết
Trần Thanh Phương
14 tháng 8 2019 lúc 21:24

BĐT \(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng bđt Cô-si :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế của 2 bđt :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)