Chứng minh x, y thuộc N; x+2ychia hết cho 5 thì 3x-4y chia hết cho 5
Cho x ,y thuộc N thoả mãn \(\sqrt{x}+\sqrt{y}=a\) thuộc N .Chứng minh rằng : \(\sqrt{x},\sqrt{y}\) thuộc N .
Ta thấy rằng \(\sqrt{x};\sqrt{y}\) không thể cùng đồng thời là số vô tỉ hoặc có 1 số vô tỉ, 1 số hữu tỉ hoặc có 1 số hữu tỉ, 1 số tự nhiên hoặc có 1 số vô tỉ, 1 số tự nhiên vì \(\sqrt{x}+\sqrt{y}=a\in N\)do đó \(\sqrt{x};\sqrt{y}\) chỉ có thể cùng hữu tỉ hoặc cùng là số tự nhiên
Giả sử \(\sqrt{x};\sqrt{y}\) là số hữu tỉ thì \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{b}{d}\left(b,d\ne0;b,d\in Z\right)\\\sqrt{y}=\dfrac{c}{e}\left(c,e\ne0;c,e\in Z\right)\end{matrix}\right.\); b,d cùng dấu; c,e cùng dấu; (b,d)=1; (c,e)=1
Ta có: \(\sqrt{x}+\sqrt{y}=\dfrac{b}{d}+\dfrac{c}{e}=\dfrac{be+cd}{de}=a\in N\)
\(\Rightarrow\left\{{}\begin{matrix}be+cd⋮d\\be+cd⋮e\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}be⋮d\\cd⋮e\end{matrix}\right.\). Mà (b,d)=1; (c,e)=1 nên \(\left\{{}\begin{matrix}e⋮d\\d⋮e\end{matrix}\right.\)=> d = e
Lại có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}=a^2\in N\) và x;y \(\in N\)
nên \(2\sqrt{xy}=2.\dfrac{bc}{de}=2.\dfrac{bc}{d^2}=2.\dfrac{bc}{e^2}\in N\)
+) d (hay e) \(⋮2\) thì d2 (hay e2) \(⋮4\) mà \(2.\dfrac{bc}{d^2}\) (hay \(2.\dfrac{bc}{e^2}\)) \(\in N\)nên bc \(⋮2\) => \(\left[{}\begin{matrix}b⋮2\\c⋮2\end{matrix}\right.\), mâu thuẫn với (b,d)=1; (c;e)=1
+) d (hay e) \(⋮̸\)2 thì \(\dfrac{bc}{d^2}\in N\Rightarrow\) \(bc⋮d^2\) mà (b;d)=1 nên c \(⋮d^2\) hay \(c⋮e^2\), mâu thuẫn với (c;e)=1
Như vậy điều giả sử là sai
=> \(\sqrt{x};\sqrt{y}\in N\left(đpcm\right)\)
1. a, Chứng minh : \(10^n\)+ 72n - 1 chia hết 81 ( n thuộc N )
b, Cho x, y thuộc N và 2x + y chia hết 5 . chứng minh : x+ 3y chia hết 5
a) Ta có:
\(10^n+72n-1=\left(10^n-1\right)+72n=999...9+72n=9.111...11+72\)
------------- ----------------
n chữ số n chữ số
\(=9\left(111...11-n\right)+9n+72n=9\left(111...11-n\right)+81n\)
---------------- ----------------
n chữ số n chữ số
Vì n là tổng các chữ số của 111...11 nên 111...11-n chia hết cho 9
----------- -----------
n c/số n c/số
=> 9(111...11-n) chia hết cho 9.9 hay 9(111...11-n) chia hết cho 81
---------- ----------
n c/số n c/số
Mà 81n chia hết cho 81 nên 9(111...11-n)+81n chia hết cho 81 hay \(10^n+72n-1\) chia hết cho 81
\(\left(n\in N\right)\)
Vậy \(10^n+72n-1\) chia hết cho 81 \(\left(n\in N\right)\)
b) Với \(x,y\in N\) ta có:
3(2x+y)-(x+3y)=6x+3y-x-3y=(6x-x)+(3y-3y)=5x
Vì 5 chia hết cho 5 nên 5x chia hết cho 5 hay 3(2x+y)+(x+3y) chia hết cho 5 \(\left(1\right)\)
Vì 2x+y chia hết cho 5 nên 3(2x+y) chia hết cho 5 \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)=> x+3y chia hết cho 5
Vậy x+3y chia hết cho 5
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
cho x,y,z thuộc Z; A= x/x+y+z + y/x+y+z + z/y+z+t + t/x+y+t
chứng minh A không thuộc N
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Cho x,y,z thuộc N*. Chứng minh rằng (x-y)(y-z)(z-x) chia hết cho 12.
Cho a, b thuộc N* mà a+b lẻ phân hoạch N* thành 2 tập con A và B.
Chứng minh tồn tại x, y thuộc A hoặc B mà |x-y| thuộc {a; b}
Tìm x,y thuộc Z biết:25-y^2=8(x-2012)^2
Cho 2^n+1 là số nguyên tố (n thuộc N;n>2).Chứng minh rằng: 2^n-1 là hợp số
cho x,y,z thuộc N* và
A=x/x+y+y/y+z+z/z+x. chứng minh rằng giá trị của A không là số nguyên
Lời giải:
Do $x,y,z>0$ nên:
$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$
Hoàn toàn tương tự ta có:
$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$
$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$
Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.
a) Tìm các giá trị n thuộc N để A=2n+5/3n+1 có giá trị là số tự nhiên.
b) Cho x,y,z thuộc N*. Chứng minh rằng A=x/x y + y/y+z + z/z+x có giá trị là một số không thuộc tập hợp số nguyên.
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
cho x,y thuộc N* thỏa mãn 402x +5y=2015 chứng minh rằng x chia hết cho 2. Tìm x,y