Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Phụng
Xem chi tiết
soyeon_Tiểubàng giải
19 tháng 6 2017 lúc 16:30

Ta thấy rằng \(\sqrt{x};\sqrt{y}\) không thể cùng đồng thời là số vô tỉ hoặc có 1 số vô tỉ, 1 số hữu tỉ hoặc có 1 số hữu tỉ, 1 số tự nhiên hoặc có 1 số vô tỉ, 1 số tự nhiên vì \(\sqrt{x}+\sqrt{y}=a\in N\)do đó \(\sqrt{x};\sqrt{y}\) chỉ có thể cùng hữu tỉ hoặc cùng là số tự nhiên

Giả sử \(\sqrt{x};\sqrt{y}\) là số hữu tỉ thì \(\left\{{}\begin{matrix}\sqrt{x}=\dfrac{b}{d}\left(b,d\ne0;b,d\in Z\right)\\\sqrt{y}=\dfrac{c}{e}\left(c,e\ne0;c,e\in Z\right)\end{matrix}\right.\); b,d cùng dấu; c,e cùng dấu; (b,d)=1; (c,e)=1

Ta có: \(\sqrt{x}+\sqrt{y}=\dfrac{b}{d}+\dfrac{c}{e}=\dfrac{be+cd}{de}=a\in N\)

\(\Rightarrow\left\{{}\begin{matrix}be+cd⋮d\\be+cd⋮e\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}be⋮d\\cd⋮e\end{matrix}\right.\). Mà (b,d)=1; (c,e)=1 nên \(\left\{{}\begin{matrix}e⋮d\\d⋮e\end{matrix}\right.\)=> d = e

Lại có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}=a^2\in N\) và x;y \(\in N\)

nên \(2\sqrt{xy}=2.\dfrac{bc}{de}=2.\dfrac{bc}{d^2}=2.\dfrac{bc}{e^2}\in N\)

+) d (hay e) \(⋮2\) thì d2 (hay e2) \(⋮4\)\(2.\dfrac{bc}{d^2}\) (hay \(2.\dfrac{bc}{e^2}\)) \(\in N\)nên bc \(⋮2\) => \(\left[{}\begin{matrix}b⋮2\\c⋮2\end{matrix}\right.\), mâu thuẫn với (b,d)=1; (c;e)=1

+) d (hay e) \(⋮̸\)2 thì \(\dfrac{bc}{d^2}\in N\Rightarrow\) \(bc⋮d^2\) mà (b;d)=1 nên c \(⋮d^2\) hay \(c⋮e^2\), mâu thuẫn với (c;e)=1

Như vậy điều giả sử là sai

=> \(\sqrt{x};\sqrt{y}\in N\left(đpcm\right)\)

Ánh mặt trời
Xem chi tiết
J Cũng ĐC
28 tháng 11 2015 lúc 20:57

a) Ta có: 

\(10^n+72n-1=\left(10^n-1\right)+72n=999...9+72n=9.111...11+72\)

                                                                                                       -------------                                   ----------------

                                                                                                      n chữ số                                      n chữ số 

\(=9\left(111...11-n\right)+9n+72n=9\left(111...11-n\right)+81n\)

             ----------------                                                                 ----------------

              n chữ số                                                                      n chữ số

Vì n là tổng các chữ số của 111...11 nên 111...11-n chia hết cho 9 

                                                  -----------         -----------

                                                    n c/số             n c/số

=> 9(111...11-n) chia hết cho 9.9 hay 9(111...11-n) chia hết cho 81

          ----------                                                ----------

           n c/số                                                  n c/số

Mà 81n chia hết cho 81 nên 9(111...11-n)+81n chia hết cho 81 hay \(10^n+72n-1\) chia hết cho 81

\(\left(n\in N\right)\)

 Vậy \(10^n+72n-1\) chia hết cho 81 \(\left(n\in N\right)\)

J Cũng ĐC
28 tháng 11 2015 lúc 21:08

b)  Với \(x,y\in N\) ta có:

      3(2x+y)-(x+3y)=6x+3y-x-3y=(6x-x)+(3y-3y)=5x 

Vì 5 chia hết cho 5 nên 5x chia hết cho 5 hay 3(2x+y)+(x+3y) chia hết cho 5                                        \(\left(1\right)\)

Vì 2x+y chia hết cho 5 nên 3(2x+y) chia hết cho 5                                                                                       \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)=> x+3y chia hết cho 5

               Vậy x+3y chia hết cho 5

congkhks10
Xem chi tiết
Nguyễn Lưu Hà Phương
15 tháng 4 2018 lúc 16:04

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

bui manh dung
Xem chi tiết
giang ho dai ca
10 tháng 5 2015 lúc 17:48

Ta có : \(\frac{x}{x+y+z+t}

nguyenvankhoi196a
6 tháng 11 2017 lúc 15:57

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

Phan Bảo Huân
Xem chi tiết
Không Tên
Xem chi tiết
Thiều Diệu Linh
Xem chi tiết
hieu pham
Xem chi tiết
Akai Haruma
28 tháng 2 2023 lúc 18:21

Lời giải:

Do $x,y,z>0$ nên:

$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$

Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$

$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$

Hoàn toàn tương tự ta có:

$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$

$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$

Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$

Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.

Jupiter Nguyễn
Xem chi tiết
phạm nghĩa
8 tháng 5 2016 lúc 16:03

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

Carthrine
Xem chi tiết