Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Harri Won
Xem chi tiết
Edogawa Conan
Xem chi tiết
Trần Mạnh
25 tháng 2 2021 lúc 21:42

https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813

Phạm Hồng Hạnh
Xem chi tiết
The Lonely Cancer
Xem chi tiết
Đặng Ngọc Thảo Nguyên
Xem chi tiết
Nguyễn Phương Thảo
29 tháng 11 2019 lúc 15:39

ta có:\(y^2+2xy-7x-12=0\)

\(\Leftrightarrow y^2+2xy+x^2=x^2+7x+12\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+3\right)\left(x+4\right)\)*

 Vế trái của * là số chính phương, vế phải là tích của 2 số liên tiếp nên phải có 1 số bằng 1

Do đó:\(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=4\end{cases}}}\)

Vậy phương trình có 2 nghiệm là (x;y)=(-3;3),(-4;4)

Khách vãng lai đã xóa
WaTeRy_Emilya
Xem chi tiết
Laura
13 tháng 12 2019 lúc 21:27

a) 2xy-6x+y=13

<=>2x(y-3)+(y-3)=10

<=>(y-3)(2x+1)=10

=>y-3 và 2x+1 thuộc Ư(10)

=>Ư(10)={-1;1;-2;2;-5;5;-10;10}

Vì 2x+1 luôn lẻ

=>2x+1={-1;1;-5;5}

Ta có bảng sau:

2x+1-11-55
y-3-1010-22
x-10-32
y-71315
NXloạitmloạitm

Vậy các cặp gt (x;y) thỏa mãn là:

(0;13); (2;5)

b) 2xy+2y-x=16

<=>x(2y-1)+(2y-1)=15

<=>(2y-1)(x+1)=15

=>2y-1 và x+1 thuộc Ư(15)

=>Ư(15)={-1;1;-3;3;-5;5;-15;15}

Ta có bảng sau:

x+1-11-33-55-1515
2y-1-1515-55-33-11
x-20-42-64-1614
y-78-23-1201
NXloạitmloạitmloạitmloạitm

Vậy các cặp gt (x;y) thỏa mãn là:

(0;8); (2;3); (4;2); (14;1)

Khách vãng lai đã xóa
Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:31

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:24

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

Bùi Hương Giang
Xem chi tiết
giang ho dai ca
28 tháng 6 2015 lúc 10:57

5x-3y=2xy-11
<=>10x-6y=4xy-22
<=>(10x-4xy) +( 15-6y)=-7
<=>2x(5-2y) +3(5-2y) =-7
<=>(5-2y)(2x+3) =-7
Vì 2x+3 là ước của 7 nên ta có:

2x+3=7 ; 5-2y = -1

hoặc 2x+3= -7 ; 5-2y = 1

<=> x=2 ; y=3 hoặc x= -5 ; y= 2

Vậy \(\left(x,y\right)\) là \(\left(2;3\right);\left(-5;2\right)\)