CHo a,c,b khác 0 và đôi mọt khác nhau thỏa mãn : b+c / bc = 2/a
CMR : b/c = a-b / c-a
Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn
b+c/bc=2/a.Chứng minh b/c=a-b/c-a
cho a,b,c khác 0 vá đôi một khác nhau thỏa mãn: (b+c)/(bc)=2/a. Chứng minh b/c=a-b/c-a
Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn \(\frac{b+c}{bc}=\frac{2}{a}\)
Chứng minh \(\frac{b}{c}=\frac{a-b}{c-a}\)
\(\frac{b+c}{bc}=\frac{2}{a}\) <=> \(\frac{1}{b}+\frac{1}{c}=\frac{2}{a}\)
<=> \(\frac{1}{b}-\frac{1}{a}+\frac{1}{c}-\frac{1}{a}=0\) <=> \(\frac{a-b}{ab}+\frac{a-c}{ac}=0\)
<=> \(\frac{a-b}{ab}=\frac{c-a}{ac}\)
=> \(\frac{ab}{ac}=\frac{a-b}{c-a}\)<=> \(\frac{b}{c}=\frac{a-b}{c-a}\) => Đpcm
Có \(\frac{b+c}{bc}=\frac{2}{a}\)
\(=>2bc=a\left(b+c\right)\)
\(=>bc+bc=ab+ac\)
\(=>bc-ab=ac-bc\)
\(=>b\left(c-a\right)=c\left(a-b\right)\)
\(=>\frac{b}{c}=\frac{a-b}{c-a}\)( đpcm)
cho a,b,c khác 0 và một đôi khác nhau thỏa mãn \(\frac{b+c}{bc}=\frac{2}{a}\)
chứng minh \(\frac{b}{c}=\frac{a-b}{c-a}\)
cho ba số thực a , b , c khác 0 và đôi một khác nhau thỏa mãn a^2.(b+c)=b^2.(a+c)=20172018 . tính giá trị biểu thức H = c^2.(a+b)
Dễ vcl giải
Có a²(b+c)-b²(a+c)=2013-2013=0
a²b+a²c-b²a-b²c=0
a²b-b²a+a²c-b²c=0
ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0
(a-b)[ab+c(a+b)]=0
Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0
Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối
=>c²(a+b)-abc=0
<=>c²(a+b)=-abc
Lại có ab + c(a+b)=0 => ab + ac + cb =0
<=> a(b+c)+cb=0
<=> a²(b+c) + abc =0
=>abc =0-2013=-2013=> abc = -2013
Nên c²(a+b)=-(abc)=-(-2013)=2013 .
Vậy c²(a+b)=2023 ezzzz
Bài này dễ lớp 6 mà
Cho ba số thực a,b,c khác 0 và đôi một khác nhau thỏa mãn a^2(b+c) = b^2(a+c) = 2014. Tính giá trị biểu thức H=c^2(a+b)
Cho ba số a,b,c đôi một khác nhau và khác 0 thỏa mãn : 1/c + 1/a-b = 1/a - 1/b-c. CMR: b = a+c
cho 3 số thực a,b,c khác 0 và đôi một khác nhau thỏa mãn b2 (a+c)= c2 (a+b)=2017. Tính biểu thức M= a2 (b+c).
Ba số thực a,b,c khác 0 và đôi một khác nhau, thỏa mãn a^2(b+c)=b^2(b+c)=2020^2021.
tính giá trị cuat biểu thức H= c^2(a+b)
Lời giải:
$a^2(b+c)=b^2(b+c)$
$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$
$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$
Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$
$\Rightarrow (a+b)(b+c)=0$
Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))
$\Rightarrow a+b=0$
$\Rightarrow H=c^2(a+b)=0$