Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
SouduChan
Xem chi tiết
nguyễn thề nam
24 tháng 10 2018 lúc 18:19

tổng các số hữu tỉ và số vô tỉ là số vô tỉ

Hoàng Nguyễn Văn
4 tháng 12 2019 lúc 18:31

a) giả sử tổng số hữu tỉ và số vô tỉ là số hữu tỉ

Ta có a+b=c(a,c là số hữu tỉ ; b là số vô tỷ)

=> b=c-a 

mà c-a là số hữu tỉ ( do a,c là số hữu tỉ)

=> b là số hữu tỉ trái đề bài

Vậy tổng số hữu tỉ và số vô tỉ là số vô tỉ

b) phần này cần điều kiện số hữu tỉ khi nhân kia phải khác 0

Giả sử tích một số vô tỉ và một số hữu tỉ là 1 số hữu tỉ

Ta có a.b=c (a,c là số hữu tỉ ; b là số vô tỷ, a khác 0)

=> b=c/a 

mà c/a là số hữu tỉ ( do a,c là số hữu tỉ)

=> b là số hữu tỉ trái đề bài 

Vậy tích một số vô tỉ và một số hữu tỉ là 1 số vô tỉ

Khách vãng lai đã xóa
Phuc
Xem chi tiết
kakashi
Xem chi tiết
nguyễn quỳnh nga
Xem chi tiết
gì cũng được
Xem chi tiết
Hoc Toan
Xem chi tiết
lã huyền như
Xem chi tiết
I - Vy Nguyễn
15 tháng 3 2020 lúc 20:50

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\(\implies\) \(b\sqrt{2}=a\)

\(\implies\) \(b^2.2=a^2\)

\(\implies\) \(a\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(a\) chia hết cho \(2\) 

\(\implies\) \(a^2\) chia hết cho \(4\)

\(\implies\) \(b^2.2\) chia hết cho \(4\)

\(\implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố

\(\implies\) \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

b) Giả sử \(5-\sqrt{2}\) là số hữu tỉ nên suy ra : \(5-\sqrt{2}=m\) ( m \(\in\) Q )

\( \implies\) \(\sqrt{2}=5-m\) ; mà \(5\) là số hữu tỉ ; \(m\) là số hữu tỉ nên suy ra : \(5-m\) là số hữu tỉ 

 Mà theo câu a ; \(\sqrt{2}\) là số vô tỉ 

\( \implies\) Mâu thuẫn

\( \implies\) \(5-\sqrt{2}\) là số vô tỉ ( đpcm )

Khách vãng lai đã xóa
I - Vy Nguyễn
15 tháng 3 2020 lúc 20:58

cậu bỏ cho tớ dòng thứ 5 với dòng ấy tớ ghi thừa

Khách vãng lai đã xóa
I - Vy Nguyễn
15 tháng 3 2020 lúc 21:13

 Xin lỗi , xin lỗi lúc nãy tớ viết vội quá nên râu ông nọ cắm cằm bà kia . Bây giờ sửa lại ý a) 

a) Giả sử \(\sqrt{2}\) là số hữu tỉ nên suy ra : \(\sqrt{2}=\frac{a}{b}\) ( a ; b \(\in\) N* ) ; ( a ; b ) = 1

\( \implies\) \(b\sqrt{2}=a\)

\( \implies\) \(b^2.2=a^2\)

\( \implies\) \(a^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố 

\( \implies\) \(a\) chia hết cho \(2\)

\( \implies\) \(a^2\) chia hết cho \(4\)

\( \implies\)  \(b^2.2\) chia hết cho \(4\)

\( \implies\) \(b^2\) chia hết cho \(2\) ; mà \(2\) là số nguyên tố nên suy ra \(b\) chia hết cho \(2\)

\( \implies\) \(\left(a;b\right)=2\) mâu thuẫn với \(\left(a;b\right)=1\)

\( \implies\) Điều giả sử sai

\( \implies\) \(\sqrt{2}\) là số vô tỉ ( đpcm )

Khách vãng lai đã xóa
vuong hien duc
Xem chi tiết
Phùng Minh Quân
17 tháng 10 2018 lúc 7:13

Đề thiếu điều kiện n là số tự nhiên nhé 

\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)

\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)

\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)

\(=\)\(\sqrt{n\left(n-1\right)+n}\)

\(=\)\(\sqrt{n\left(n-1+1\right)}\)

\(=\)\(\sqrt{n^2}\)

\(=\)\(\left|n\right|\)

Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)

Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm ) 

Chúc bạn học tốt ~ 

quynh tong ngoc
Xem chi tiết