Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn
b+c/bc=2/a.Chứng minh b/c=a-b/c-a
cho a,b,c đôi 1 khác nhau và khác 0 thỏa mãn: a+1/b=b+1/c=c+1/a.chứng minh rằng: abc+1 hoặc abc=-1
Giải nè:
Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc])))
Ta có:
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên)
=abc.3/(abc)=3
Cách II:
Từ giả thiết suy ra:
(1/a +1/b)³=-1/c³
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³
=abc(1/a³ + 1/b³ + 1/c³)
=abc.3/(abc)=3
Câu hỏi của ngô thị đào - Toán lớp 8 - Học toán với OnlineMath
Bài làm đúng.
cho a,b,c khác 0 vá đôi một khác nhau thỏa mãn: (b+c)/(bc)=2/a. Chứng minh b/c=a-b/c-a
Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn \(\frac{b+c}{bc}=\frac{2}{a}\)
Chứng minh \(\frac{b}{c}=\frac{a-b}{c-a}\)
\(\frac{b+c}{bc}=\frac{2}{a}\) <=> \(\frac{1}{b}+\frac{1}{c}=\frac{2}{a}\)
<=> \(\frac{1}{b}-\frac{1}{a}+\frac{1}{c}-\frac{1}{a}=0\) <=> \(\frac{a-b}{ab}+\frac{a-c}{ac}=0\)
<=> \(\frac{a-b}{ab}=\frac{c-a}{ac}\)
=> \(\frac{ab}{ac}=\frac{a-b}{c-a}\)<=> \(\frac{b}{c}=\frac{a-b}{c-a}\) => Đpcm
Có \(\frac{b+c}{bc}=\frac{2}{a}\)
\(=>2bc=a\left(b+c\right)\)
\(=>bc+bc=ab+ac\)
\(=>bc-ab=ac-bc\)
\(=>b\left(c-a\right)=c\left(a-b\right)\)
\(=>\frac{b}{c}=\frac{a-b}{c-a}\)( đpcm)
cho a,b,c khác 0 và một đôi khác nhau thỏa mãn \(\frac{b+c}{bc}=\frac{2}{a}\)
chứng minh \(\frac{b}{c}=\frac{a-b}{c-a}\)
CHo a,c,b khác 0 và đôi mọt khác nhau thỏa mãn : b+c / bc = 2/a
CMR : b/c = a-b / c-a
cho a,b,c là các số khác 0 và đôi một khác nhau thỏa mãn:
\(\frac{ab+2}{b}=\frac{bc+2}{c}=\frac{ca+2}{a}\)
chứng minh rằng a2b2c2=8
cho a,b,c khác 0 và đôi một khác nhau thỏa mãn \(\frac{b+c}{bc}\)= \(\frac{2}{a}\)chứng minh \(\frac{b}{c}\)= \(\frac{a-b}{c-a}\)
Cho a,b,c khác 0 và đôi một khác nhau thỏa mãn:
\(\frac{b+c}{b.c}=\frac{2}{a}\)Chứng minh : \(\frac{b}{c}=\frac{a-b}{c-a}\)
cho các số tự nhiên a,b,c,d đôi một khác nhau và khác 0 thỏa mãn a^2+d^2=b^2+c^=P. chứng minh rằng P là hợp số