Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Thị Quỳnh Anh
Xem chi tiết
Thanh Lự Nguyễn Thị
Xem chi tiết
Trịnh Hoàng Đông Giang
Xem chi tiết
Phước Nguyễn
9 tháng 4 2016 lúc 10:49

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

Nguyền Thừa Huyền
9 tháng 4 2016 lúc 9:42

1a) x=1, y=1/2, z=0

Phước Nguyễn
9 tháng 4 2016 lúc 11:06

Ta có:

\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\)  (do  \(x+y=xy\))  \(\left(5\right)\)

Dễ dàng chứng minh được với mọi  \(x,y\in R\), ta luôn có:

\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(\text{*}\right)\)

Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số  \(\left(1^2+1^2\right)\)  và  \(\left(x^2+y^2\right)\), ta được:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)

Do đó,  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay  \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)  \(\left(đpcm\right)\)

Vậy, bất đẳng thức \(\left(\text{*}\right)\)  hiển nhiên đúng với mọi  \(x,y\in R\), tức bđt  \(\left(\text{*}\right)\)  được chứng minh.

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{1}{x}=\frac{1}{y}\)  \(\Leftrightarrow\)  \(x=y\)  

Khi đó,  từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\)  (do  hai vế của bđt  \(\left(\text{*}\right)\)  cùng dấu  \(\left(+\right)\))

nên  \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\)  (vì  \(x^2+y^2>0\)  với mọi  \(x,y\in R\) và  \(x,y\ne0\))  \(\left(6\right)\)

\(\left(5\right);\)  \(\left(6\right)\)  \(\Rightarrow\)  \(A\ge\frac{1}{2}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x+y=xy}_{x=y}\)  \(\Leftrightarrow\)  \(x=y=2\)

Vậy,  GTNN của  \(A=\frac{1}{2}\)

Hoàng Như Anh
Xem chi tiết
Anh Lê
6 tháng 3 2019 lúc 20:04

a) TA có:

(x+2)x(y-3)=5 => x+2 và y-3 thuộc Ư(5)= 1,5,-1,-5

Ta có bảng

x+215-1-5
y-351-5-1
x-13-3-7
y84-22
Nguyễn Thị Ngọc Mai
Xem chi tiết
Vũ Tiến Manh
18 tháng 10 2019 lúc 13:25

1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)

M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)

M đạt GTLN khi a=1, b=2 hay x=2; y= 8

2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)

x=-4 => (y+4)2 =4 <=> y = -2;y = -6

x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)

x=0 => y2 = 4 => y =2;  =-2

vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)

3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh

Khách vãng lai đã xóa
Vũ Tiến Manh
18 tháng 10 2019 lúc 13:36

3) sửa lại

áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))

dấu '=' khi x=y=z

Khách vãng lai đã xóa
Thùy Hoàng
Xem chi tiết
Nguyễn Nhật Minh
5 tháng 8 2016 lúc 23:46

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

Nguyễn Nhật Minh
5 tháng 8 2016 lúc 23:51

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

Nguyễn Nhật Minh
6 tháng 8 2016 lúc 0:08

\(A=x^2+y^2=\frac{\left(1^2+1^2\right)\left(x^2+y^2\right)}{2}\ge\frac{\left(1.x+1.y\right)^2}{2}=\frac{1}{2}\)A min = 1 khi x =y = 1/2

\(\sqrt{A}=\sqrt{x^2+y^2}\le\sqrt{x^2}+\sqrt{y^2}=x+y=1\)\(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\))

=> A\(\le1\) => Max A = 1 khi x =0;y =1 hoặc x =1 ; y =0

Mai Phú Sơn
Xem chi tiết
Viett Anhhh
Xem chi tiết
Nguyễn Hưng Phát
18 tháng 12 2018 lúc 20:56

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

Đỗ Uyển Dương
Xem chi tiết