tim tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n^2-1 va cba=(n-2)^2
tìm tất cả các số tự nhiên có 3 chữ số abc( gạch ddaauf0 sao cho abc( gạch đầu) =n² -1 va cba(gạch đầu ) = (n-2)²
tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc= n*2-1 va cba=(n-2)*2
giúp mk với nhé mọi người
Ta có : abc = 100a + 10b + c
cba = 100c + 10b + a
Suy ra : abc - cba = 99(a - c)
<=> n2 - 1 - (n - 2)3 = 99 (a - c)
<=> 4n - 5 = 99 (a - c)
<=> 4n - 5 chia hết cho 99 (1)
Lại có 100 ≤ abc ≤ 999 => 100 ≤ n 2 − 1 ≤ 999 => 101 ≤ n2 ≤ 1000⇒11 ≤ n ≤ 31 => 39 ≤ 4n − 5 ≤ 119 (2)
Từ (1) và (2) suy ra : 4n - 5 = 99 => n = 26
Vậy số cần tìm abc = n2 - 1 = 262 - 1 = 675
Tìm tất cả các số tự nhiên có 3 chữ số abc sao choabc=n2-1 va cba =(n-2)2
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n² -1 và cba= (n-2)²
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n² -1 và cba= (n-2)²
tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc=n^2 -1 và cba = (n-2)^2
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc= n^2-1 và cba= ( n-2)^2
tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc=n^2-1 và cba=(n-2)^2
tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc=n^2-1 và cba=(n^2-2)^2
Ta có abc = a x 100 + b x 10 + c = n2 - 1 (1)
cba = c x100 + b x 10 + a = (n-2) 2
= (n-2) x n - 2 x (n-2)
= n2 - 2n - 2n + 4
= n2 - 4n + 4 (2)
Trừ 2 vế (1) cho (2) ta co
abc - cba = (ax100 + bx100 + c) - (cx100 + bx10 + a) = (n2 - 1) - (n2 - 4n + 4)
ax100 + bx10 +c - cx100 - bx10 - c = n2 - 1 - n2 + 4n - 4
(ax100 - a) + (bx10 - bx10) + (100xc - c) = (n2 - n2 ) + 4n - (1+4)
99a - 99c = 4n - 5
99 x (a - c) = 4n - 5
Vì a,c là STN nên a - c là STN suy ra 4n - 5 : 99 la STN
suy ra 4n - 5 chia hết cho 99
Vi abc la so co 3 chu so suy ra 99 < abc < 1000,ma abc = n2 - 1
suy ra abc + 1 =n2 ma n2 - 1 cung co 3 chu so suy ra 100<n2 <1001 suy ra 10<n<32
suy ra 10x4 < nx4 < 32x4 suy ra 40-5 < nx4-5 < 128-5 hay 35 < nx4-5< 123
Lại có 4n-5 chia hết cho 99 nên 4n-5 = 99 suy ra n = (99+5) : 4 = 26
Thay n = 26 vao (1) ta dc abc = 262 - 1 = 675
Vay abc = 675