tìm max,min (nếu có) của biểu thức:
A=|x-2016|+(y-2017)^2+2017
Tìm Max, Min của các biểu thức:
A= |4x-3|+|5y+7,5|+17,5
B= |x-2|+|x-6|+2017 (Min)
C= 2020-|x+1|-|y-2| biết x+y=5
D= 2/3 + 21/ (x+3y)2 +5|x+5|+14
E= 27-2x / 12-x; x thuộc Z (MAX)
1) Tìm giá trị nhỏ nhất của biểu thức : A=|x-2016|+2017 / |x-2016| + 2018.
2) Tìm số nguyên x,y sao cho : x-2xy+y=0
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
Tìm giá trị nhỏ nhất hoặc lớn nhất nhất nếu có thể của các biểu thức sau
a,A=-1+2-3+4-5+6-...-2015+2016-|x-2017|
b,B=1-2+3-4+5-6+...+2015-2016+|2017-x|
c,C=10-(x+2)
nếu giải thì các cậu phải viết rõ ý a,b c ra nhé để mình còn biết
Tìm GTNN của biểu thức: A= (|x-2016| + 2017)/(|x - 2016| + 2018)
Ta có:
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\Rightarrow\frac{1}{\left|x-2016\right|+2018}\le\frac{1}{2018}\)
=>\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge\frac{2017}{2018}\)
=>\(A_{min}=\frac{2017}{2018}\)<=>|x-2016|=0<=>x-2016=0<=>x=2016
cho x,y thỏa mãn: x4-7x2+y2+16=2xy
Tính giá trị của biểu thức A=x2016y2017-x2017y2016+x+y
Ta có : \(x^4-7x^2+y^2+16=2xy\)
=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)
=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)
=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)
=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)
Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)
Vậy A=8
https://olm.vn/thanhvien/nguyentrangth8 bạn giỏi thế
Giá trị của biểu thức A = x^2017 - 2017x^2016 + 2017x^2015 – 2017x^2014 + ... – 2017x^2 + 2017x – 2017 tại x = 2016
Lời giải:
Tại $x=2016$ thì $x-2016=0$
Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$
$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$
1. Tìm Min hoặc Max :
a) A = | x + 1| + 2016
b) B = 2017 - | 2x - 1/3|
c) C = | x + 1| + | y + 2| + 2016
d) D = -| x + 1/2| - | y - 1| +10
2. Tìm x, biết:
a) ( x+1)( y + 2) = 0
b) ( x + 2)( x - 3) > 0
c) ( x + 1/2) = 3
d) | x + 1| < 2016
e) | x - 1/2| > 5
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
a) ( x + 1 )( y + 2 ) = 0
\(\Rightarrow\) x + 1 = 0 hoặc y + 2 = 0
+) x + 1 = 0 \(\Rightarrow\) x = -1
+) y + 2 = 0 \(\Rightarrow\) y = -2
Vậy x = -1; y = -2
tìm GTNN của biểu thức sau:
P=/x-2015/+/x-2016/+/x-2017/
A=/x-1/+/x-2017/
a,Cho x,y thỏa mãn \(^{2x^2+y^2+4=4x+2xy
}\)
Tính giá trị của biểu thức A = \(x^{2016}y^{2017}-x^{2017}y^{2016}+25xy\)
b, Cho đa thức P=(x-1)(x+2)(x+4)(x+7) +2070 và Q = \(x^2+6x+2\)
Tìm số dư của phếp chia P cho Q