X- { x - [ x - (- x + 1 ) ] }= 1
đề của bài là tìm x thuộc Z
Bài 1 : tìm x thuộc N
a) x - { x - [( -x + 1 )]}
b) ( x + 5 ) . ( x -2 ) < 0
Bài 2 :
Tìm x, y thuộc Z
a ) ( x+1).(xy-1)
b) 3x + 4y - xy =15
Bài 3 : Tìm x,y,z thuộc N : 26^x= 25^y = 26^z
Bài 4 : x-y=2011
y - z = -2012
z + x = 2013
Bài 5 :
tìm phân số bằng phân số 20/39 pít UWCLN của tử và mẫu của phân số đó là 36
Bài 6 :
Tìm a,b thuộc N biết :
BCNN ( a,b) = 180
UWCln ( a,b ) 12
Bài 7:
tìm a,b biết :
UwCLN ( a,b)+ BCNN ( a,b) =23
Bài 8 :
tìm x, y thuộc N*: y+1 chia hết cho x
x + 1 chia hết cho y
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
Bài 7 :
gọi UWCLN ( a,b ) = d ( d thuộc N*)
=> a = d .m, b = d . n
( m,n)=1
BCNN ( a,b) = d . m. n
mà UWCLN (a,b )+ BCNN (a,b ) = 23
=> d + dmn = 23
=> d .( 1+mn) =23
........ v.v
tử từng t/h
Đ/S : vs m = 2 2 => n=1 hoặc m=11, n=2
vs a = 22 => b =1 hoặc a =11 => b = 2
Bài 7:Đ/s : x=1,y=1
x=3, y=2
x=1,y=2
x=2,y=3
x=2,y=1
Bài 1:rút gọn
a,A= <giá trị tuyệt đối của x-3 >+x-5 với x<3
b,B=<giá trị tuyệt đối của 2+x>-(x+1) với x lớn hơn hoặc bằng -2
c, C= <giá trị tuyệt đối của x+1>+<giá trị tuyệt đối của x-2> với -1 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2
Bài 2 Tìm x thuộc Z biết
(x+3)*(x-2) nhỏ hơn 0
Bài 3 Tìm a,b thuộc Z biết a*b=12 và a+b=7
Bài 4 Tìm x,y thuộc Z biết x+x*y+y=9
Bài 5 tìm x thuộc Z sao cho:x^2+2 là ước của x+2
Giải hộ mình nhé, mỗi bạn làm một bài cho mình cũng được mình tick cho
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
Bài 2:Tìm x thuộc Z để số sau là số chính phương
a)x^2 +3x b)x^2 +x+6
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
Bài 2:Tìm x thuộc Z để số sau là số chính phương
a)x^2 +3x b)x^2 +x+6
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
Giúp mình với ~ Mình đang cần gấp!
Bài 1 : Tìm x thuộc Z sao cho (x - 7) . (x + 3) < 0
Bài 2 : Tìm n thuộc Z sao cho : n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
@Chiyuki Fujito : Bài 2 là một đề bạn nhé !
Xin lỗi hiện tại t lm đc thêm mỗi bài 4 nx thôi ~~~
Bài 4 : Gọi cặp số nguyên cần tìm gôm 2 số a và b ( a,b là số nguyên )
Theo bài ra ta có ab = a + b
=> ab - a - b = 0
=> ab - a - b + 1 = 1
=> a (b - 1 ) - ( b - 1 ) = 1
=> ( a - 1 ) ( b - 1 ) = 1
\(\Rightarrow\hept{\begin{cases}a-1=1\\b-1=1\end{cases}}\) hoặc \(\hept{\begin{cases}a-1=-1\\b-1=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\) hoặc \(\hept{\begin{cases}a=0\\b=0\end{cases}}\)
=> Các cặp số nguyên thỏa mãn đề bài là ( 2;2 ) ; ( 0 ; 0 )
Vậy các cặp số nguyên thỏa mãn đề bài là ( 2;2 ) ; ( 0 ; 0 )
@@ Học tốt
Xl nhé t chx có time nghĩ ra 2 câu kia ~~~ Trong ngày mai thì có thể đc ak lúc ấy c cs cần nx k
Bài 2 : Tìm n thuộc Z sao cho : n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Có nghĩa là \(n-1⋮n+5\) và \(n+5⋮n-1\) ak ??
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Bài 1 Tìm X biết (x+4)²-81=0 Bài 2 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 3 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
bài 1 tìm x thuộc z thoản mãm
x^2 + y^2 + 13 là số chính phương
bafi tìm xy thuộc z thoả mãn
x!+y!= (x+y)!
Bài 1 cho biểu thức A=(x-3/x - x/x-3 + 9/x²-3x)2x-2/x A) tìm ĐKXĐ và rút gọn A B) tìm X thuộc Z để A thuộc Z Bài 2 A) x³-2x² B) y²-2y-x²+1 C) (x+1)²-25