\(GTNN:\sqrt{x^2+2x+5}\)
\(GTNN:\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)giúp mik với!!!
tìm gtnn
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{3}{2}\)
Bài 1 : Giai phương trình sau :
\(\sqrt{2x-2+2\sqrt{2x-3}}\) + \(\sqrt{2x+13+8\sqrt{2x-3}}=5\)
Bài 2 : Tìm GTNN của biểu thức sau :
A = \(\sqrt{4X^2-4X+1}+\sqrt{4X^2-12X+9}\)
Tìm GTNN của: \(P=\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
tích mình đi
ai tích mình
mình ko tích lại đâu
thanks
\(\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}=|1+2x|+|2x-3|=|1+2x|+|3-2x|>=|1+2x+3-2x|=4\)
=>p min=4
dau "="xay ra <=>(1-2x)(3-2x)>=0
=>x
Ta có: \(P=\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow P=\sqrt{4x^2+4x+1}+\sqrt{9-12x+4x^2}\)
\(\Leftrightarrow P=\sqrt{\left(2x+1\right)^2}+\sqrt{\left(3-2x\right)^2}\)
\(\Leftrightarrow P=\left|2x+1\right|+\left|3-2x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)cho phương trình \(P,\)ta có:
\(P=\left|2x+1\right|+\left|3-2x\right|\ge\left|2x+1-3-2x\right|=\left|-2\right|=2\)
\(\Rightarrow\)\(P_{min}=2\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(2x+1\right).\left(3-2x\right)>0\)
C1: Các bạn lập bảng xét dấu nha mình làm cách kia cho các bạn dễ hiểu
C2:
+ \(\hept{\begin{cases}2x+1>0\\3-2x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}2x>-1\\-2x>-3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{1}{2}\\x< \frac{3}{2}\end{cases}}\)\(\Rightarrow\)\(-\frac{1}{2}< x< \frac{3}{2}\)( TM )
+ \(\hept{\begin{cases}2x+1< 0\\3-2x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}2x< -1\\-2x< -3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{1}{2}\\x>\frac{3}{2}\end{cases}}\)\(\Rightarrow\)\(-\frac{1}{2}>x>\frac{3}{2}\)( L )
\(\Rightarrow\)\(-\frac{1}{2}< x< \frac{3}{2}\)
Vậy \(P_{min}=2\)\(\Leftrightarrow\)\(-\frac{1}{2}< x< \frac{3}{2}\)
TÌM GTNN
a)\(\sqrt{x^2+2x+5}\)
b) \(\sqrt{4x^2+4x+1}+\sqrt{4x^2+2x+9}\)
GTNN của biểu thức
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\) là
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|1+2x\right|+\left|2x-3\right|\)
\(=\left|1+2x\right|+\left|3-2x\right|\)
Áp dụng BĐT : \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\left|1+2x\right|+\left|3-2x\right|\ge\left|1+2x+3-2x\right|=4\)
Vậy GTNN của biểu thức trên là : 4 khi \(-\frac{1}{2}\le x\le\frac{3}{2}\)
Chúc bạn học tốt !!!
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|1+2x\right|+\left|2x-3\right|\)
\(=\left|1+2x\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|1+2x\right|+\left|3-2x\right|\ge\left|1+2x+3-2x\right|=\left|4\right|=4\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(1+2x\right)\left(3-2x\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}1+2x\ge0\\3-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge-1\\-2x\ge-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\x\le\frac{3}{2}\end{cases}}\Rightarrow-\frac{1}{2}\le x\le\frac{3}{2}\)
2. \(\hept{\begin{cases}1+2x\le0\\3-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le-1\\-2x\le-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{1}{2}\\x\ge\frac{3}{2}\end{cases}}\)(loại)
Vậy GTNN của biểu thức = 4 <=> \(-\frac{1}{2}\le x\le\frac{3}{2}\)
Tìm GTNN:
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
Tìm GTLN,GTNN :
a) \(A=2x-6\sqrt{x}-1\)
b) \(C=\frac{1}{-2x+4\sqrt{x}+3}\)
c) \(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
d) \(F=\sqrt{2x-7}+\sqrt{5-2x}\)
e) \(A=-3x+6\sqrt{x}+3\)
h) \(E=\sqrt{2x+1}-\sqrt{2x-8}\)
i) \(F=\sqrt{3x-2}+\sqrt{5-3x}\)
mình cần gấp hôm nay ạ, giúp mình với ạ
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
tìm GTNN câu a: P\(=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\) câu b Q\(=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)
a) P=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
=\(\left|2x-1\right|+\left|2x-3\right|\)
=\(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
<=> \(P\ge2\)
Dấu "=" xảy ra <=> (2x-1)(3-2x)\(\ge0\)
<=> \(\frac{1}{2}\le x\le\frac{3}{2}\)
Vậy min P=2 <=>\(\frac{1}{2}\le x\le\frac{3}{2}\)
b)Tương tự ý a
tìm gtnn của
a \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
b \(Q=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)