Những câu hỏi liên quan
nguyễn mạnh
Xem chi tiết
Le Thi Khanh Huyen
26 tháng 12 2016 lúc 11:33

Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.

Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.

Tam giác MNP vuông tại M có góc N là 60 độ.

Trên tia đối tia MN lấy điểm Q sao cho MQ=MN

Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.

Tương tự với bài toán của chúng ta :

\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)

\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)

\(\Rightarrow HB=\frac{1}{4}BC\)

Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)

 nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{DAH}=60^o\)

\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )

Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH

\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)

\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều

\(\Rightarrow KB=AB\)

Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.

Vậy ....

Bình luận (0)
Phí Tùng Dương
26 tháng 12 2016 lúc 12:27

dung roi

Bình luận (0)
Dương Hải Yến
26 tháng 12 2016 lúc 19:32

bạn ấy làm đúng rồi, nhưng có vẻ bạn ấy làm cách áy là hơi dài nhỉ ?

Bình luận (0)
Nguyễn Trang A1
Xem chi tiết
ALICE CHANNEL
Xem chi tiết
khanh
Xem chi tiết
Thanh Hoàng Thanh
2 tháng 12 2021 lúc 16:03

a) Xét tam giác AHB có: ^AHB = 90o (AH vuông góc với BC). 

=> Tam giác AHB vuông tại H.

=> ^B + ^HAB = 90o.

Mà ^B = 60o (gt).

=> ^HAB = 30o.

b) Xét tam giác HAD có: AD = AH (gt).

=> Tam giác HAD cân tại A.

Mà AI là trung tuyến (I là trung điểm của HD).

=> AI là phân giác ^HAD.

=> ^IAH = ^IAD.

c) Xét tam giác HAK và tam giác DAK có:

+ AH = AD (gt).

+ ^KAH = ^KAD (do ^IAH = ^IAD).

+ AK chung.

=> Tam giác HAK = Tam giác DAK (c - g - c).

=> ^AHK = ^ADK (2 góc tương ứng).

Mà ^AHK = 90(AH vuông góc với BC).

=> ^ADK= 90o.

=> AD vuông góc KD.

Mà AD vuông góc AB (do tam giác ABC vuông tại góc A).

=> AB // KD (Từ vuông góc đến //).

c)  Ta có: ^HAB + ^IAH + ^IAD = 90o (do tam giác ABC vuông tại góc A).

<=> ^HAB + 2^IAH = 90o.

Thay số: 30o + 2^IAH = 90o.

<=> ^IAH = 30o.

=> ^IAH = ^HAB = 30o.

Ta có: HA = HE (gt). => H là trung điểm của AE.

Xét tam giác AKE có:

+ HK là đường cao (AH vuông góc với HK).

+ HK là đường trung tuyến (H là trung điểm của AE).

=> Tam giác AKE cân tại K.

=> ^IAH = ^E (Tính chất tam giác cân).

Mà ^IAH = ^HAB (cmt).

=> ^E = ^HAB. => AB // KE (do 2 góc ở vị trí so le trong).

Mà AB // KD (cmt).

=> 3 điểm D, K, E thẳng hàng (đpcm).

Bình luận (0)
Trần Nghiên Hy
Xem chi tiết
Trần Nguyễn Bảo Quyên
8 tháng 12 2016 lúc 15:53

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\)\(\widehat{HAB}+\widehat{B}+\widehat{AHB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow\widehat{HAB}+60^0+90^0=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(60^0+90^0\right)=30^0\)

Vậy \(\widehat{HAB}=30^0\)

Bình luận (1)
Trần Nguyễn Bảo Quyên
8 tháng 12 2016 lúc 15:49

Bạn tự vẽ hình nhé

Bình luận (0)
caikeo
1 tháng 1 2018 lúc 21:03

a)ΔABCΔABC vuông tại AAˆ=900A⇒A^=900

ΔABCΔABCAˆ+Bˆ+Cˆ=1800A^+B^+C^=1800 ( tổng ba góc của một tam giác )

900+600+Cˆ=1800⇒900+600+C^=1800

Cˆ=1800(900+600)=300⇒C^=1800−(900+600)=300

AHBCAHBˆ=900AH⊥BC⇒AHB^=900

ΔAHBΔAHBHABˆ+Bˆ+AHBˆ=1800HAB^+B^+AHB^=1800 ( tổng ba góc của một tam giác )

HABˆ+600+900=1800⇒HAB^+600+900=1800

HABˆ=1800(600+900)=300⇒HAB^=1800−(600+900)=300

Vậy HABˆ=300

Bình luận (0)
Trần Nghiên Hy
Xem chi tiết
Trần Nguyễn Bảo Quyên
8 tháng 12 2016 lúc 16:03

\(a.\)

\(\Delta ABC\) vuông tại \(A\Rightarrow\widehat{A}=90^0\)

\(\Delta ABC\) có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(90^0+60^0\right)=30^0\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)

\(\Delta AHB\) có : \(\widehat{AHB}+\widehat{B}+\widehat{HAB}=180^0\) ( tổng ba góc của một tam giác )

\(\Rightarrow90^0+60^0+\widehat{HAB}=180^0\)

\(\Rightarrow\widehat{HAB}=180^0-\left(90^0+60^0\right)=30^0\)

Vậy : \(\widehat{HAB}=30^0\)

Bình luận (0)
Trần Nguyễn Bảo Quyên
8 tháng 12 2016 lúc 15:58

Bạn tự vẽ hình nha

Bình luận (0)
nguyen ha vy
Xem chi tiết
Nguyễn Thị Mai Loan
Xem chi tiết
NTN vlogs
4 tháng 1 2019 lúc 12:52

a, TG HAB có :

BAH +  BHA + B = 180

=> BAH + 90 + 60 = 180

=> HAB = 30 

Bình luận (0)
NTN vlogs
4 tháng 1 2019 lúc 12:52

b,chứng minh tam giác AHI và tam giác ADI bằng nhau đúng ko

Xét TG AIH và TG AID có :

AH = AD (gt)

AI cạnh chung

HI = ID (gt)

=> TG AIH = TG AID (c-c-c)

Bình luận (0)
Darlingg🥝
11 tháng 7 2019 lúc 10:46

A)tính thành hai Trung đ

Xét các vế AB và CT

B)tính các tia đối...??

C...??? Tương tự

Bình luận (0)
Red Headphones Gamer
Xem chi tiết