Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Quốc Gia Huy
Xem chi tiết
ngô thị đào
Xem chi tiết
Đinh Tuấn Việt
17 tháng 7 2015 lúc 22:01

Sửa lại một số chỗ :

Ta có: 
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.

Nguyễn Tuấn Thành
4 tháng 3 2016 lúc 20:25

Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks

Vũ Văn Hùng
13 tháng 5 2017 lúc 20:51

Ta có:

  (n2-8)2+36

=[(n2+10)-18]2

=(n2+10)2-2(n2+10).18+182+36

=(n2+10)2-(6n)2-360+324+36

=(n2+10-6n)(n2+10+6n)

Lợn Còii
Xem chi tiết
zZz Cool Kid_new zZz
1 tháng 12 2019 lúc 19:01

\(\left(n^2-8\right)^2+36\)

\(=n^4-16n^2+100\)

\(=\left(n^2+10\right)^2-\left(6n\right)^2\)

\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)

Để \(\left(n^2-8\right)^2+36\) là số nguyên tố thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)

Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)

\(\Rightarrow n^2-6n+10=1\)

\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)

Khách vãng lai đã xóa
Hà Thị Quỳnh
Xem chi tiết
Võ Thị Tuyết Nhung
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
ngonhuminh
2 tháng 11 2016 lúc 21:43

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

Gae Song
Xem chi tiết
liên hoàng
Xem chi tiết