Tìm số tự nhiên n để \(\left(n^2-8\right)^2+36\)là số nguyên tố
Tìm các số tự nhiên \(n\) để \(B=\left(n^2-8\right)^2+36\) là số nguyên tố.
Tìm số tự nhiên n để giá trị của biểu thức \(C=\left(n^2-8\right)^2+36\)là một số nguyên tố?
tìm số tự nhiên n để (n^2-8)^2 + 36 là số nguyên tố
Sửa lại một số chỗ :
Ta có:
(n2−8)2+36=(n2−6n+10)(n2+6n+10)
Để (n2−8)2+36 là số nguyên tố thì n2−6n+10=1 hoặc n2+6n+10=1
TH1: n2−6n+10=1
⇔ n=3
Thử lại thấy đúng.
TH2: n2+6n+10=1
⇔ n=−3 (loại vì n∈N)
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố.
Tại sao (n^2-8)^2 +36 lại bằng ( n^2 -6n+1-)(n^2+6n+10) Vậy các bạn???
Giải thích giùm mình nha
Tks
Ta có:
(n2-8)2+36
=[(n2+10)-18]2
=(n2+10)2-2(n2+10).18+182+36
=(n2+10)2-(6n)2-360+324+36
=(n2+10-6n)(n2+10+6n)
Tìm số tự nhiên n để (n^2-8)^2+36 là số nguyên tố
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+100\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là số nguyên tố thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Tìm n thuộc số tự nhiên để A=(n^2-8)^2 +36 là số nguyên tố
Tìm các số tự nhiên n để
\(2\left(n-23\right)-n^4\left(2-n\right)\)
là số nguyên tố
Tìm tất cả các số tự nhiên n để P=\(\left(n^2-2n+1\right)\left(n^2-2n+2\right)+1\)là số nguyên tố
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2
Tìm n để \(\left(n^2-8\right)^2+36\) là số nguyên tố.
tìm tất cả các số tự nhiên n để P = \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) là số nguyên tố !!!!