Hướng dẫn giải của bài toán này:
x.y.z = a,x .y = b,x + z = c
Hướng dẫn giải của bài toán này:
x.y.z = a,x .y = b,x + z = c
Bài toán: Cho yc-bz/x = za-xc/y=xb-ya/z biết ( x,y,z khác 0)
Chúng minh a/x=b/y=c/z
Anh chị giúp em giải bài toán này cái ạ.Em cảm ơn nhiểu ạ!
Ta phải giả sử x,y,z khác 0
gt: (yc-bz)/x=(za-xc)/y =>
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay:
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*)
mặt khác từ gt:
(yc-bz)/x=(xb-ya)/z =>
(c/z-b/y)/yx^2=(b/y-a/x)/yz^2 hay:
(c/z-b/y)/x^2=(b/y-a/x)/z^2 (**)
*nếu: c/z-b/y>0
<=>c/z>b/y
Theo (*) ta có:
a/x-c/z>0
<=>a/x>c/z
=>a/x>c/z>b/y
=>b/y-a/x<0 vô lí vì từ (**) :
b/y-a/x>0
*nếu: c/z-b/y<0
<=>c/z<b/y
Theo (*) ta có:
a/x-c/z<0
=>a/x<c/z
=>a/x<c/z<b/y.
=>b/y-a/x>0. vô lí vì theo (**) => b/y-a/x<0
Vậy ta phải có:
c/z-b/y=0
Thay vào (*) ta có:
a/x=b/y=c/z.
Ta có:
yc-bz/x = za-xc/y=xb-ya/z=k
=> xyc-xbz/x^2=zya-xyc/y^2=zxb-zya/z^2=k
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
xyc-xbz/x=zya-xyc/y=zxb-zya/z=xyc-xbz+zya-xyc+zxb-zya/x^2+y^2+z^2 ( x^2+y^2+z^2 >0, vì x,y,z khác 0)
= [(xyc-xyc)+(-xbz+zxb)+(zya-zya)]/x^2+y^2+z^2=0/x^2+y^2+z^2=k
=>k=0
=> yc-bz/x=0 => yc-bz=0 => yc=bz => c/z=b/y (1)
za-xc/y=0 => za-xc=0 => za=xc => a/x=c/z (2)
Từ (1) và (2) => a/x =b/y=c/z
Nhìn cách giải thế thôi chứ giải ra giấy ngắn lắm bạn nhé !
Các anh chị có thể giúp em giải bài toán này được ko ạ!
Bài toán1: Cho x/y=y/z=z/x. So sánh x,y,z biết x+y+z khác 0
Bài toán 2: Chứng minh răng:
a) nếu a+z/a-z=b+3/b-3 thì a/z=b/3
b) nếu a-c/c-b=a/b thì 1/c=1/2 (1/a+1/b)
c) nếu a/b=c/d thì 2a^2016 + 5b^2016/2c^2016+5d^2016 = (a+b)^2016/(c+d)^2016
x/y=y/z=z/x
=> x*z = 2*y = x*y = 2*z
Ta có :
x*z = x*y
=> z=y
Ta có :
x*z = 2*y = y*y
Mà y = z (cmt)
=> x*z = y*z
=>x=y
Mà y = z (cmt)
=> x=y=z
ứng dụng câu x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2)
giải bài toán
cho a+b+c=0. CM a^3+b^3+c^3=3abc
Từ \(a+b+c=0\Rightarrow a+b=-c\)
Xét hiệu \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\left(I\right)\)
Thay \(a+b=-c;a+b+c=0\left(GT\right)v\text{ào}\left(I\right)\) ta được
\(a^3+b^3+c^3-3abc=\left(-c\right)^3+c^3-3ab.0\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(\text{Đ}PCM\right)\)
Vậy \(a^3+b^3+c^3=3abc\) với \(a+c+b=0\)
Giả sử x = a m ; y = b m (a, b, m ∈ Z; m > 0) và x < y. Hãy chứng minh nếu chọn z = a + b 2 m thì ta có x < z < y.
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c ∈ Z và a < b thì a + c < b + c
Theo đề bài ta có (a, b, m ∈ Z; m > 0).
Quy đồng mẫu số các phân số ta được:
Nhận xét: mẫu số 2m > 0 nên để so sánh x, y, z ta so sánh các tử số 2a, 2b, a+b.
Vì a < b nên a + a < b + a hay 2a < a + b.
Vì a < b nên a + b < b + b hay a + b < 2b.
Vậy ta có 2a < a+b < 2b nên hay x < z < y.
Câu 5:
Giả sử , \(x=\frac{a}{m}\), \(y=\frac{b}{m}\) \(\left(a,b,m\in Z,m>0\right)\) và x < y. Hãy chứng tỏ rằng nếu chọn \(z=\frac{a+b}{2m}\) thì ta có x < z < y.
Hướng dẫn: sử dụng tính chất: Nếu \(a,b,c\in Z\) và a < b thì ta có a + c < b + c.
( Bài 5, SGK toán 7, trang 8, bạn có thể lật sách ra coi đề nếu tui viết sai)
Chứng tỏ rằng nếu \(z=\frac{a+b}{2.m}\) thì ta x < z < y.
Ta có:
\(x=\frac{am}{2m};y=\frac{bm}{2m}\)
Vì x < y cho nên:
=> am < bm => am + am < am + b => a (2m) < b (a.b)
=> \(\frac{a}{m}< \frac{a+b}{2m}\)
Cũng tương tự như vậy ta có: \(\frac{a+b}{2m}< \frac{b}{m}\)
Do đó: \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
Cho a,b,c là những số nguyên dương và x,y,z thỏa mãn x+y+z=1008. Đặt \(A=\frac{b}{a}x+\frac{c}{a}z;B=\frac{a}{b}x+\frac{c}{b}y;C=\frac{a}{c}z+\frac{b}{c}y\). Chứng minh: \(A+B+C\ge2016\)GIÚP MÌNH GIẢI BÀI TOÁN NÀY VỚI! MÌNH CẦN GẤP BẠN NÀO GIẢI ĐÚNG MÌNH LIKE CHO
Giả sử x=a/m, y=b/m (a,b,m€Z,m>0) và x<y. Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
Hướng dẫn sử dụng tính chất nếu a,b,c €Z và a<b thì a+c<b+c.
Giúp mình nhé
toán 6 thôi
Cho \(\frac{x}{a}\)=\(\frac{y}{b}\)=\(\frac{z}{c}\)với a, b, c, x, y, z khác 0
Rút gọc biểu thức B=\(\frac{\left(a^2x+b^2y+c^2z\right)^3}{x^3+y^3+z^3.}\)
giải giùm mình nhé
Bài toán trong tạp chí toán tuổi thơ THCS
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
=>\(B=\frac{\left(a^2x+b^2y+c^2z\right)^3}{x^3+y^3+z^3}=\frac{\left(a^2ak+b^2bk+c^2ck\right)^3}{\left(ak\right)^3+\left(bk\right)^3+\left(ck\right)^3}=\frac{\left(a^3k+b^3k+c^3k\right)^3}{a^3k^3+b^3k^3+c^3k^3}\)
\(=\frac{k^3\left(a^3+b^3+c^3\right)^3}{k^3\left(a^3+b^3+c^3\right)}=\left(a^3+b^3+c^3\right)^2\)
cảm ơn trà my nhiều
bài nè ko phải gửi đi lấy điểm đâu các bn.