Chứng minh: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
chứng minh
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
Cho \(x,y\in Q\) . Chứng minh\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
a) Với mọi x,y∈Q, ta luôn luôn có:
x ≤ |x| và − x ≤ |x| ; y ≤ |y| và − y <_|y|
Suy ra x+y ≤ |x|+|y| và −x−y ≤ |x|+|y|
hay x+y≥ − (|x|+|y|) x + y
Do đó −(|x|+|y|) ≤ x+y ≤|x|+|y|
Vậy |x+y| ≤ |x|+|y|
Cho 0 < x \(\le y\le z\)
Chứng minh rằng: \(y\left(\frac{1}{x}+\frac{1}{z}\right)+\frac{1}{y}\left(x+z\right)\le\left(x+z\right)\left(\frac{1}{x}+\frac{1}{z}\right)\)
Cho x, y, z > 0
Chứng minh :
\(\sqrt{x\left(y+1\right)}+\sqrt{y\left(z+1\right)}+\sqrt{z\left(x+1\right)}\le\frac{3}{2}\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
chứng minh $\sqrt{x(y+1)}+\sqrt{y(z+1)}+\sqrt{z(x+1)}\leq \frac{3}{2}\sqrt{(x+1)(y+1)(z+1)}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Cho \(x,y\in\mathbb{Q}\). Chứng tỏ rằng :
a) \( \left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) \(\left|x-y\right|\le\left|x\right|-\left|y\right|\)
a) Với mọi \(x,y\in Q\), ta luôn luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) ; \(y\le\left|y\right|\) và \(-y\le\left|y\right|\)
Suy ra \(x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) Theo câu a ta có:
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
Chứng minh rằng với mọi x, y thuộc Q thì :
\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
đây là 1 trong những bất đẳng thức cơ bản bạn mua sách về mà tham khảo
Cho x, y, z thỏa mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)
chứng minh rằng x+y+z\(\le\)4
Cho các số thực x, y, z thõa mãn xyz = 1. Chứng minh rằng:
\(\frac{1}{\left(2+x\right)\left(2+\frac{1}{y}\right)}+\frac{1}{\left(2+y\right)\left(2+\frac{1}{z}\right)}+\frac{1}{\left(2+z\right)\left(2+\frac{1}{x}\right)}\le\frac{1}{3}\)
\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)
\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)
Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\) (*)
Đặt (x;y;z) -------> \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Suy ra (*) <=> \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)
Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)
Đẳng thức xảy ra <=> x = y = z = 1
chứng minh rằng với mọi số thực x,y luôn có :
\(\left(x^3+y^3\right)^2\le\left(x^2+y^2\right)\left(x^4+y^4\right)\)
ta có \(VT=\left(x^3+y^3\right)^2=\left(x.x^2+y.y^2\right)^2\le\left(x^2+y^2\right)\left(x^4+y^4\right)\) (đpcm)