cho hai nguyên x,y thõa mãn (x-3)(y+2)=-5. gtln của x^2+y^2 là ?
cho các số thực x,y thõa mãn x^4 + y^4 + x^2 - 3 - 2y^2x(1-x^2) tìm gtln của x^2 + y^2
Đề thiếu. Bạn viết lại đề cẩn thận, rõ ràng để mọi người hỗ trợ tốt hơn bạn nhé.
cho 2 số x;y nguyên thõa mãn (2x-3)^2 +|y-2|=1. số cặp (x;y) thõa mãn là
Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên
Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm
TH1: (2x-3)2=0 và |y-2|=1
\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)
Ta không xét đến |y-2|=1 nữa!
TH2: (2x-3)2=1 và |y-2|=0
\(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)\(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)Vậy có 2 cặp x;y thỏa mãn là .........................
\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)
\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)
Với x=1,2=>có y=2
với 1,3 không có x thỏa mãn
KL:
(xy)=(1,2); (2,2)
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
cho các số thực x, y, z thõa mãn x^2+y^2+z^2=1. Tìm GTLN của biểu thức P = xyz
Áp dụng BĐT Cô-si cho 3 số dương \(x^2,y^2,z^2\) , ta có:\(x^2+y^2+z^2\ge3\sqrt[3]{\left(xyz\right)^2}\)
\(\Leftrightarrow\left(xyz\right)^2\le\dfrac{\left(x^2+y^2+z^2\right)^3}{27}\) \(=\dfrac{1}{27}\)
\(\Leftrightarrow-\dfrac{1}{3\sqrt{3}}\le xyz\le\dfrac{1}{3\sqrt{3}}\)
Vậy \(max_{xyz}=\dfrac{1}{3\sqrt{3}}\). Dấu "=" xảy ra khi \(x^2=y^2=z^2\)
\(\Rightarrow\left(x,y,z\right)=\left(\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)\) hoặc \(\left(\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}}\right)\) và các hoán vị.
Cho hai số thực x, y thõa mãn: x+y, x2+y2, x4+y4 là các số nguyên. Chứng minh rằng: x3+y3 cũng là số nguyên.
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)(1)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy\)
Vì \(x^2+y^2\)và x+y là các số nguyên => 2xy là số nguyên
\(x^4+y^4=\left(x^2+y^2\right)-2x^2y^2\)
Vì \(x^4+y^4,x^2+y^2\)là các số nguyên => \(2x^2y^2\)là số nguyên
=> \(\frac{1}{2}\left(2xy\right)^2\)là số nguyên=> \(\left(2xy\right)^2⋮2\)mà 2 là số nguyên tố => 2xy chia hết cho 2=> xy là số nguyên (2)
Từ (1), (2) và x+y là số nguyên
=> x^3+y^3 cũng là số nguyên.
biết x;y là 2 số nguyên thõa mãn 5/x = y/-3. Khi đó x-y đạt giá trị lớn nhất là
Ta có:
\(\frac{5}{x}=\frac{y}{-3}\)
<=>xy=-15
Mà x,y thuộc Z
=>(x;y)=(-3;5);(3;-5)(5;-3)(-5;3)(15;-1)(-15;1)(1;-15)(-1;15)
Từ đó ta lần lượt xét các hiệu của x-y
=>giá trị lớn nhất của x-y là 16<=>x=15;y=-1 và x=1;y=-15
1; Tập hợp các giá trị của x thoả mãn:/x+3/-5=0
2;giá trị nguyên dương của x thỏa mãn :/x-1/=-[x-1] là?
3;cho 2 số nguyên x;y thỏa mãn :/x/+/y=7,giá trị lớn nhất của x.y là?
4;giá trị lớn nhất của biểu thức : -3-/x+2/ là?
5;GTLN của biểu thức ; 15-[x-2]^2 là ?
giúp mình với . mình đang cần gấp nhé!
x, y là 2 số nguyên thõa mãn: 5/x = y/-3. Khi đó x-y đạt giá trị lớn nhất là ........................
cách làm
tìm tất cả các cặp nguyên dương (x,y) thõa mãn đồng thời: |x| + 3 , 5 và 5 - |y| > 2