tìm x thuộc N biết 2n+16 chia het 2n+2
tìm n thuộc Z để 2n^2-n+2 chia het cho 2n+1
\(2n^2-n+2⋮2n+1\)
\(2n^2+n-2n-1+3⋮2n+1\)
\(n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\left(2n+1\right)\left(n-1\right)+3⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-1\right)⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow n\in\left\{0;1;-1;-2\right\}\)
Vậy.........
tìm n thuộc z để 2n2-n+2 chia het cho 2n+1
TÌM n thuộc Z để 2n2 – n + 2 chia hết 2n + 1.
– | 2n2– n + 22n2 + n | 2n + 1 | |
n – 1 | |||
– | O – 2n + 2– 2n – 1 | ||
3 |
Phép chia hết khi : 2n + 1 có giá trị là U(3) ={ ±1; ±3}
khi : 2n + 1 = 1 => n = 0khi : 2n + 1 = -1 => n = -1khi : 2n + 1 = 3 => n = 1khi : 2n + 1 = -3 => n =-2Vậy : n = 0, – 1, 1, – 2
a] n+2 thuộc Ư (20)
b] 2n+3 thuộc Ư (16)
c] 6 chia hết cho ( n+1)
d] 6 chia hết cho (n-2)
e] 14 chia hết cho ( 2n +1)
f ] 6 chia het cho ( 2n-1 )
g] 2n +7 chia hết cho n +1
h] 3n+5 chia hết cho n -1
a) n+2 thuộc Ư(20) = {-1,-2,-4,-5,-10,-20,1,2,4,5,10,20}
Ta có bảng :
n+2 | -1 | -2 | -4 | -5 | -10 | -20 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -3 | -4 | -6 | -7 | -12 | -22 | -1 | 0 | 2 | 3 | 8 | 18 |
Vậy n = {-22,-12,-7,-6,-4,-3,-1,0,2,3,8,18}
b) 2n+3 thuộc Ư(16) = {-1,-2,-4,-8,-16,1,2,4,8,16}
Ta có bảng :
2n+3 | -1 | -2 | -4 | -8 | -16 | 1 | 2 | 4 | 8 | 16 |
n | -2 | \(\frac{-5}{2}\) | \(\frac{-7}{2}\) | \(\frac{-11}{2}\) | \(\frac{-19}{2}\) | -1 | \(\frac{-1}{2}\) | \(\frac{1}{2}\) | \(\frac{5}{2}\) | \(\frac{13}{2}\) |
Vậy ...
c) => n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n = {-7,-4,-3,-2,0,1,2,5}
d) => n-2 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n-2 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 1 | 0 | -1 | -4 | 3 | 4 | 5 | 8 |
Vậy n= {-4,-1,0,1,3,4,5,8}
e) =>2n+1 thuộc Ư(14)={-1,-2,-7,-14,1,2,7,14}
Ta có bảng :
2n+1 | -1 | -2 | -7 | -14 | 1 | 2 | 7 | 14 |
n | -1 | \(\frac{-3}{2}\) | -4 | \(\frac{-15}{2}\) | 0 | \(\frac{1}{2}\) | 3 | \(\frac{13}{2}\) |
f) =>2n-1 thuộc Ư(6)= {-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
2n-1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 0 | \(\frac{-1}{2}\) | -1 | \(\frac{-5}{2}\) | 1 | \(\frac{3}{2}\) | 2 | \(\frac{7}{2}\) |
Vậy ...
Tìm n thuộc n để
n+6 chia het cho n-3
2n+8 chia het cho n+2
3n +5 chia het -2n+1
giup minh lam bai nay nhe cac ban
Ta có
n+6 chia hết cho n-3
=> n-3 +9 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 9 chia hết cho n-3
Xét các ước của 9 để tìm đk n là số tự nhiên
Ta có:
2n+8 chia hết cho n+2
=>2(n+2)+4 chia hết cho n+2
Các phần sau làm tương tự câu trên
Ta có
3n+5 chia hết cho -2n+1
=> 3n+5 chia hết cho 2n-1
=> 6n+10 chia hết cho 2n-1
=>3(2n-1)+13 chia hết cho 2n-1
Phần sau làm tương tự nhé bạn
TÌM N THUỘC N SAO CHO 2N+5 CHIA HET CHO 2N-1
ta có ; 2n-1 chia hết 2n-1 mà 2n+5 chia hết cho 2n-1 tyương đương : ( 2n-1+6) chia hết cho 2n-1 suy ra 6 chia hết cho 2n-1 suy ra 2n-1 thuộc Ư(6) = ( 1;2;3;6) nếu 2n-1 = 1 thì n = 1 loài trường hợp 2n-1 = 2 vì lúc này n ko tồn tại ( nếu n là sô tự nhiên ) 2n-1 = 3 thì n = 2 loại trường hợp 2n-1 = 6 vì lí luận như trên vậy n = 1 và 2
Tìm số tự nhiên n biết
2n^2+3n+7 chia het cho 2n+3
n^2+9n+9 chia het cho n-4
tìm n thuộc N biết:
a, 23n+4 + 32n+1 chia het cho 19
b, n.2n +1 chia het cho 3
Tìm số tự nhiên n biết::
a) n + 13 chia het cho(n+1)
b) 2n + 15 chia het cho ( n+3)
c) 6n + 24 chia het cho ( 2n +3)
d) 2n+6 chia het cho ( 3n +1)
e) 12n + 8 chia het cho ( 3n-1)
g) n^2 + 4n - 7 chia het cho ( n-1)
tìm n thuộc Z sao cho a,n2+2n-4 chia hết cho 11 b,2n3+n2+7n+1 chia hết cho 2n-1 c,n4-2n3+2n2-2n+1 chia het cho n4-1 d,n3-n2+2n+7 chia het cho n2+1
(Chỉ là chia đa thức thôi mà!)
Anh giải câu b thôi, mấy câu còn lại tự làm nha.
\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)
Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)