Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Khánh Ly
Xem chi tiết
Mai Tiến Đỗ
15 tháng 10 2019 lúc 22:19

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

Mai Tiến Đỗ
15 tháng 10 2019 lúc 22:16

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

Mai Tiến Đỗ
15 tháng 10 2019 lúc 22:18

b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)

Mà n,n+1,n+2 là 3 sô nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)

Kudo Shinichi
Xem chi tiết
Nguyễn Thanh Hiền
30 tháng 11 2018 lúc 19:23

Ta có :

\(A=n^6-n^4+2n^3+2n^2\)

\(A=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)

\(A=n^4\left(n+1\right)\left(n-1\right)+2n^2\left(n+1\right)\)

\(A=n^2\left(n+1\right).\left[n^2\left(n-1\right)+2\right]\)

\(A=n^2\left(n+1\right).\left(n^3-n^2+2\right)\)

\(A=n^2\left(n+1\right).\left(n^3+1+1-n^2\right)\)

\(A=n^2\left(n+1\right).\left(n+1\right).\left(n^2-n+1-n+1\right)\)

\(A=n^2\left(n+1\right)^2.\left(n^2-2n+2\right)\)

Với \(n\in N\), n > 1 thì \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

\(n^2-2n+2=n^2-2\left(n-1\right)< n^2\)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+n< n^2\)

Vậy A không phải số chính phương

✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Trần Thị Loan
17 tháng 6 2015 lúc 9:28

A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)

=  n2(n + 1).(n3 - n2 + 2) =  n2(n + 1).(n3 + 1 + 1 - n2) =  n2(n + 1).(n +1). (n2 - n + 1 - n + 1) =  n2( n + 1)2.(n2 - 2n + 2)

Với n > 1 => n2 - 2n +  1 < n2 - 2n + 2 < n2 

               => (n - 1)2 < n2 - 2n + 2 < n2  

(n - 1)2 ;  n2 là 2 số chính phương liên tiếp  => n2 - 2n + 2 không thể là số chính phương

=> A không là số chính phương

Nguyễn Thị Ánh Tuyết
25 tháng 5 2020 lúc 15:35

mình ko biết

Khách vãng lai đã xóa
Nguyễn Ngọc Khánh Hà
18 tháng 11 2021 lúc 16:32

`n6 - n4 + 2n3 + 2n2`
`= n2 . (n4 - n2 + 2n +2)`
`= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]`
`= n2 . [(n + 1)(n3 - n2 + 2)]`
`= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]`
`= n2. (n + 1)2 . (n2 - 2n + 2)`
Với `n ∈ N, n > 1` thì` n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2`
Và `n2 - 2n + 2 = n2 - 2(n - 1) < n2`
Vậy `(n - 1)2 < n2 - 2n + 2 < n2`
`=> n2 - 2n + 2` không phải là một số chính phương.

Duong Thi Nhuong
Xem chi tiết
Boy Lạnh Lùng
25 tháng 10 2017 lúc 18:04

Chứng minh n^6+n^4-2n^2 chia hết cho 72?

Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 22:32

\(S=a+a^3+...+a^{2n+1}\)

\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)

\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)

\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)

\(S_1=1+a^2+...+a^{2n}\)

\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)

\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)

\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)

Hùng Phan Đức
Xem chi tiết
Vui lòng để tên hiển thị
28 tháng 3 2023 lúc 21:15

`A = n^2(n^4 - 2n^3 + 2n^2 - 2n + 1)` 

Để `A` chính phương thì `n^4 - 2n^3 + 2n^2 - 2n + 1 = a^2 (a in NN)`.

`<=> n^4 -2n^3 + n^2 + n^2- 2n +1 = a^2`

`<=> (n^2+1)(n-1)^2 = a^2`.

Vì `(n-1)^2` chính phương, `a^2` chính phương.

`=> n^2+1` chính phương.

Đặt `n^2+1 = b^2(b in NN)`.

`=> (b-n)(b+n) =1`

Mà `b, n in NN`.

`=> {(b-n=1), (b+n=1):}`

`<=> {(b=1), (n=0):}`

Vậy `n = 0`.

Vũ Khánh Linh
Xem chi tiết
Nguyễn Quốc Khánh
23 tháng 12 2015 lúc 22:09

ta có

\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)

\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Ta có

\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)

Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)

Từ (1) và (2)

=>\(\left(n-1\right)^2

Kim Tae-hyung
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Hữu Thế
27 tháng 9 2015 lúc 10:32

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá