Chứng minh
(\(\frac{6}{x^2-6x}\)+\(\frac{1}{x+6}\)) . \(\frac{x^2+36}{x^2-36}\)=1
chứng minh:
\(\left(\frac{6}{x^2-6x}+\frac{1}{x+6}\right):\frac{x^2+36}{x^2-36}=1\)
Ta có:\(\left(\frac{6}{x^2-6x}+\frac{1}{x+6}\right):\frac{x^2+36}{x^2-36}\)
\(=\left(\frac{6\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)}+\frac{x\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x^2-6^2}{x^2+36}\)
\(=\left(\frac{6x+36+x^2-6x}{x\left(x-6\right)\left(x+6\right)}\right).\frac{\left(x-6\right)\left(x+6\right)}{x^2+36}\)
\(=\frac{x^2+36}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+36}\)
\(=\frac{1}{x}\)
Kiểm tra đi bạn phải là \(\frac{1}{x}\)
Chứng minh rằng
a, \(\left(\frac{x}{x-36}-\frac{x-6}{x^2-6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}=-1\)
help meeee !!!
Chứng minh
\(\left(\frac{6}{x^2-6x}\right)\) + \(\frac{1}{x+6}\) ) . \(\frac{x^2+36}{x^2-36x}\) = 1
\(\left(\frac{x}{^{x^2-36}}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
chứng minh biểu thức không phụ thuộc vào biến x
CMR:
\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6}+\frac{x}{6-x}=-1\)
Giúp mk vs ạ!!!
Xem lại đề gõ thiếu không? Ở \(\frac{2x-6}{x^2+6}\) phải là \(\frac{2x-6}{x^2+6x}\) chứ nhỉ
Sửa lại đề của bạn nhé
\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\\ =\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\left(\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\frac{\left(x-x+6\right)\left(x+x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\frac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}+\frac{-x}{x-6}\\ =\frac{6x\left(2x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(2x-6\right)}+\frac{-x}{x-6}\\ =\frac{6}{x-6}+\frac{-x}{x-6}\\ =\frac{6-x}{x-6}\\ =-1\left(đpcm\right)\)
Rút gọn : \(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
\(\left(\frac{x}{x^2-36}+\frac{6-x}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
đkxđ: \(x\ne0;x\ne\pm6\)
MTC=x(x+6)(x-6)
\(=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}+\frac{6-x}{x\left(x+6\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\left[\frac{x^2}{x\left(x^2-36\right)}-\frac{\left(x-6\right)^2}{x\left(x^2-36\right)}\right]\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\frac{x\left(x+6\right)}{x\left(x-3\right)}-\frac{x}{x-6}\)
\(=\frac{12}{x\left(x-6\right)}-\frac{x^2}{x\left(x-6\right)}\)
\(=\frac{12-x^2}{x\left(x-6\right)}\)
.....................
Rút gọn : A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right)\div\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
= \(\left[\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\left[\frac{x^2}{x\left(x-6\right)\left(x+6\right)}-\frac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{\left(x-x+6\right)\left(x+x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2\left(x-3\right)}{x\left(x+6\right)}-\frac{x}{x-6}\)
=
= \(\frac{x\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}:\frac{2x-6}{x\left(x+6\right)}-\frac{x}{x-6}\)
= \(\frac{2x-6}{\left(x-6\right)\left(x+6\right)}.\frac{x\left(x+6\right)}{2x-6}\) \(-\frac{x}{x-6}\)
= \(\frac{x}{x-6}-\frac{x}{x-6}\)
= 0
S=\(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
a, Rút gọn biểu thức S
b, tìm x để giá trị của S=-1
Cho A = \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right).\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
a, tìm điều kiện xác định. Rút gọn A
b, Tìm A để : A=-1
c, Tính giá trị của A khi x=1
\(a)A=(\frac{x}{(x+6)(x+6)}-\frac{x-6}{x(x+6)})\cdot\frac{x(x+6)}{2x-6}+\frac{x}{x-6}\)
\(A=\frac{x^2-(x-6)^2}{x(x+6)(x-6)}\cdot\frac{x(x+6)}{2x-6}-\frac{x}{x-6}=\frac{(x-x+6)(x+x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}\)
\(=\frac{6(2x-6)}{(x-6)(2x-6)}-\frac{x}{x-6}=\frac{6}{(x-6)}-\frac{x}{x-6}\cdot\frac{6-x}{x-6}=-1\)
\(b)\text{A luôn = -1 với mọi x}\)