Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Hiếu Thảo
Xem chi tiết
Kaya Renger
30 tháng 4 2018 lúc 22:25

Từ phương trình trên , suy ra :

\(\left(2a-1\right)^2=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow4a^2-4a+1=\left(a^2-2a-3\right)+2xy\)

\(\Leftrightarrow3a^2-2a+4=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{4}{3}\right)=2xy\)

\(\Leftrightarrow3\left(a^2-\frac{2}{3}a+\frac{1}{9}\right)+\frac{11}{3}=2xy\)

\(\Leftrightarrow3\left(a-\frac{1}{3}\right)^2+\frac{11}{3}=2xy\)

Nhận thấy \(VT\ge\frac{11}{3}\)suy ra  \(2xy\ge\frac{11}{3}\) => \(xy\ge\frac{11}{6}\)

Vậy Min(xy) = 11/6 <=> a = 1/3

I lay my love on you
Xem chi tiết
alibaba nguyễn
4 tháng 2 2020 lúc 10:44

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}S=2a-1\\S^2-2P=a^2+2a-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}S=2a-1\\P=\frac{3a^2-6a+4}{2}\end{cases}}\)

Để hệ có nghiệm thì

\(S^2\ge4P\)

\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le a\le\frac{4+\sqrt{2}}{2}\)

Giờ tìm giá trị nhỏ nhất của 

\(P=\frac{3a^2-6a+4}{2}\)dễ thấy \(P_{min}\)tại \(a=\frac{4-\sqrt{2}}{2}\)(Đoạn này không khó nên tự làm nha)

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:03

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

Khách vãng lai đã xóa
Hương Lương
Xem chi tiết
forever young
Xem chi tiết
Teendau
Xem chi tiết
trang lê
Xem chi tiết
Nguyễn Thị Lan
Xem chi tiết
Nguyễn Hoài Phương
31 tháng 3 2018 lúc 16:30

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

Trương Trọng Tiến
Xem chi tiết