Câu 1 :Tìm a,b,c biết \(\frac{21x^2+4x-41}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-3\right)}=\frac{a}{x+1}+\frac{b}{x+2}+\frac{c}{x-3}\)
\(A,\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(B,\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\cdot\left(\frac{2}{2-x}-\frac{4}{8+x^2}\cdot\frac{4-2x+x^2}{2-x}\right)=\frac{1}{2x}\)
\(C,\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right):\frac{2x+y}{x^2+2xy+y^2}\right]\cdot\frac{x-y}{3}=xy\)
Chứng minh đẳng thức ( tìm x)
mọi người giải dùm mình cảm ơn
a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)
\(=\frac{4x}{\left(x+1\right)^2}\)=VP
b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)
=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)
=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP
c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)
\(=x+y=\)VP
Vậy các đẳng thức được chứng minh
=
Tìm x biết :
a, ( 4x - 9 ) . ( 2,5 + \(\frac{-7}{3}\). x ) = 0
b, \(\frac{1}{x\cdot\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\cdot\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
A/ Ta có số nào nhân với 0 cx = 0
Vậy từ đó suy ra 2 trường hợp
TH1\(4x-9=0\)
\(=>x=\frac{9}{4}\)
TH2 \(2,5+-\frac{7}{3}x=0\)
\(=>x=\frac{15}{14}\)
tìm a,b,c biết :
\(\frac{21x^2+4x-41}{\left(x+1\right)\left(x+2\right)\left(x-3\right)}=\frac{a}{x+1}+\frac{b}{x+2}+\frac{c}{x-3}\)
\(VP=\frac{a\left(x^2-x-3\right)+b\left(x^2-2x-3\right)+c\left(x^2+3x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x-3\right)}\)
\(=\frac{\left(a+b+c\right)x^2+x\left(-a-2b+3c\right)+\left(-3a-3b+2c\right)}{\left(x+1\right)\left(x+2\right)\left(x-3\right)}\)
đồng nhất hệ số ta có
\(\hept{\begin{cases}a+b+c=21\\-a-2b+3c=4\\-3a-3b+2c=-41\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=24\\b=\frac{-37}{5}\\c=\frac{22}{5}\end{cases}}\)
\(P=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right)\cdot\left(\frac{\left(x^3-2x^2-2x-1\right)\cdot\left(x+1\right)}{x^9+x^7-3x^2-3}\right)+1-\frac{2\left(x+6\right)}{x^2+1}\right]\cdot\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
a, Tìm ĐKXD của P
b,Rút Gọn P
c,Chứng Minh Với các giá trị của x mà biểu thức P có nghĩa thì \(-5\le P\le0\)
Chứng minh \(A,\frac{\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)}{\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)}=\frac{4x}{\left(x+1\right)^2}\)
\(B,\frac{\frac{2+x}{2-x}}{\frac{4x^2}{4-4x+x^2}}\cdot\left(\frac{2}{2-x}-\frac{4}{8+x2}\cdot\frac{4-2x+x^2}{2-x}\right)=\frac{1}{2x}\)
\(C,\frac{\orbr{\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right)}}{\frac{2x+y}{x^2+2xy+y^2}đóngngocvuong}\cdot\frac{x-y}{3}=xy\)
xin lỗi mọi người cái phân số dài là dấu chia nhé tại mình không biết viết sao với cái đóng ngoặc vuông nữa nhé xin lỗi lần nữa ạ
a) Tính
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\left(1-\frac{1}{2014}\right)\cdot\left(1-\frac{1}{2015}\right)\cdot\left(1-\frac{1}{2016}\right)\)
b) Tìm x:
\(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}+\frac{x-2}{56}+\frac{x-2}{72}=\frac{16}{9}\)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
A = ( 1 - 1/2) . ( 1 - 1/3 ) . (1-1/4) ....(1-1/2015) . (1-1/2016)
A= 1/2 . 2/3 . 3/4...2014/2015 . 2015/2016
A = 1 . 2 . 3 . 4 ... 2014 . 2015/ 2 . 3 . 4 ... 2015 . 2016
A = 1/ 2016
tìm x
a) \(\frac{x-1}{2}+\frac{x-2}{5}=\frac{1}{4}+\frac{x-7}{10}\)
b) \(3-\frac{2}{2x-3}=\frac{2}{5}+\frac{1}{2x-3}-\frac{3}{2}\)
c)\(7\cdot\left(x-1\right)+2x\cdot\left(1-x\right)=0\)
d) \(\frac{x+1}{2008}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+10}{2009}+\frac{x+11}{2008}+\frac{x+12}{2007}\)
e) \(\frac{2}{\left(x-1\right)\cdot\left(x-3\right)}+\frac{5}{\left(x-3\right)\cdot\left(x-8\right)}+\frac{12}{\left(x-8\right)\cdot\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
a)\(\frac{3}{2}-\frac{1}{3}\cdot\left(x-\frac{3}{2}\right)-\frac{1}{2}\cdot\left(2\cdot x+1\right)=5\)
b)\(\left(x+\frac{1}{2}\right)\cdot\left(x-\frac{3}{4}\right)=0\)
c)\(2x-3=x+\frac{1}{2}\)
Tìm giá trị của biểu thức : \(C=\frac{4x^4+1}{4\left(x+1\right)^2+1}\cdot\frac{4\left(x+2\right)^4+1}{4\left(x+3\right)^4+1}\cdot\cdot\cdot\frac{4\left(x+10\right)^4+1}{4\left(x+11\right)^4+1}\)