Chứng minh rắng với mọi a, b thuộc N* có thể phân tích ra thành tông của các phân số có tử số là 1.
Cho phương trình x2 - 4x + 1 = 0 có các nghiệm là x1, x2 . Chứng minh rằng x12n + x22n có thể phân tích được thành tổng của ba số nguyên liên tiếp với mọi n thuộc N*.
Nhờ các bác giải giúp bài toán:
Bài 1: Phân số, tử của nó là (3n+2)/(4n-5) có thể rút gọn cho những số nào /
Bài 2: Chứng minh phân số (3n-1)/(2n-1) tử của nó tối giản (với n thuộc Z).
Cảm ơn./.
2. Gọi d là ƯC(3n-1 ; 2n - 1)
\(\Rightarrow\hept{\begin{cases}3n-1⋮d\\2n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-1\right)⋮d\\3\left(2n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-2⋮d\\6n-3⋮d\end{cases}}}\)
=> ( 6n - 3 ) - ( 6n - 2 ) chia hết cho d
=> 6n - 3 - 6n + 2 chia hết cho d
=> ( 6n - 6n ) + ( 2 - 3 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> 3n - 1 tối giản ( đpcm )
" => ƯCLN(3n - 1 ; 2n - 1) = 1
=> \(\frac{3n-1}{2n-1}\)tối giản "
a)Phân tích đa thức thành nhân tử: x3+y3+z3 (biết x+y+z=0)
b)Cho 3 số a,b,c thỏa a+b+c=1; a3+b3+c3=1. Chứng minh rắng a2n+1+b2n+1+c2n+1=1 với mọi n\(\in\)N*
a, x^3 + y^3 + z^3 = (x+y)^3 - 3xy(x+y) + z^3
= (x+y+z)[(x+y)^2 - (x+y)z + z^2] - 3xy(x+y)
= -3xy(x+y) (do x+y+z=0)
Vì x+y+z=0 =>x+y=-z
=> -3xy(x+y)=3xyz
Bài này có nhiều cách giải bạn cũng có thể dựa vào x+y+z=0 => x=-(y+z),....... rồi thay vào
Và sau này khi giải các bài toán thì bạn có thể AD: Nếu x+y+z=0 thì x^3 +y^3+z^3=3xyz
Cho A=x^3-5x^2+8x-4; B=x^5/30 - x^3/6 + 2x/15. Chứng minh:
a, Phân tích A và B thành nhân tử.
b, B là số nguyên khác 17 với mọi x thuộc Z.
Rất mong nhận được sự trợ giúp của các bạn cảm ơn rất nhiều.
Ta có
\(A=x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)\(=\left(x^2-4x+4\right)\left(x-1\right)=\left(x-2\right)^2\left(x-1\right)\)
phân tích các phân số dươi đây thành tông phân số tối giảm cùng mẫu số :
- có bao nhiêu phân số mà tỉ số là số có 2 chữ số dư 1 mà mẫu số là 29
-có bao nhiêu phân số mà tử số là 14 mẫu số là số có 2 chữ số chia hết cho 2 bé hơn 1
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có thể chia các số 1 , 2,..., 3 n thành ba tập A , B , C đôi một không giao nhau sao cho tổng các phần tử ở mỗi tập là bằng nhau
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có thể chia các số 1 , 2,..., 3 n thành ba tập A , B , C đôi một không giao nhau sao cho tổng các phần tử ở mỗi tập là bằng nhau
a) Tính nhanh : A = 2/2.3 + 2/5.7 + ...... +2/97. 99
b) Chứng minh rằng mọi phân số có dạng n/n+1 ( với n thuộc N , n khác 0 ) đều là phân số tối giản
b)goi d la UC(n;n+1)
suy ra n chia het cho d (1)
suy ra n+1 chia het cho d (2)
tu (1) va (2) suy ra n-(n+1) chia het cho d
suy ra n-n-1 chia het cho d
suy ra -1 chia het cho d
suy ra d=-1 hoac 1
suy ra UC (n;n+1)=1 hoac -1
suy ra n/n+1 la phan so toi gian
cho biểu thức : A= 3n + 2 / n + 1 ( n thuộc Z, n # -1 )
a, tìm giá trị của n để A có giá trị là số nguyên
b. chứng minh A là phân số tối giản với mọi giá trị của n