CMR: B=1/4+1/5+1/6+...+1/19 >1
Cho B= 1/4+1/5+1/6+...+1/19. CMR B>1
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
CMR: 1/4+1/5+1/6+...+1/19>1
Ta có: 1/4>1/16 ; 1/5>1/16 ;1/6>1/16 ; ......; 1/19<1/16 (lấy phân số 1/16 vì từ 1/4 đến 1/19 có 16 số nên lấy 1/16 để được 1)
suy ra : (1/4+1/5+1/6+...+1/15) >(1/16+1/16+1/16+...+1/16) =1 1/4+1/5+1/6+...1/15 >1 (1) (1/16+1/17+1/18+1/19) < (1/16+1/16+1/16+...+1/16) =1 1/16+1/17+1/18+1/19 <1 (2)
từ 1 và 2 suy ra b>1 là 11 lần (vì có 11 số) và b<1 là 4 lần (vì có 4 số)
Vậy :b>1
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{16}+\frac{1}{16}+...+\frac{1}{16}=\frac{1}{16}\times16=1\)
Vậy suy ra điều phải chứng minh.
xem ở đây: Giúp tôi giải toán - Hỏi đáp về toán học - Học toán với OnlineMath
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{19}+\frac{1}{20}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...+ 1/19 - 1/20
= ( 1 + 1/3 + 1/5 + ...+ 1/19 ) - ( 1/2 + 1/4 + ...+ 1/20 )
= ( 1 + 1/2 + 1/3 + 1/4 + ...+ 1/19 + 1/20 ) - 2 . ( 1/2 + 1/4 + ...+ 1/20 )
= ( 1 + 1/2 + 1/3 + ...+ 1/20 ) - ( 1 + 1/2 + ... + 1/10 )
= 1/11 + 1/12 + 1/13 + ...+ 1/20 ( Đpcm )
TK mk nha !!!
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{20}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{19}+\frac{1}{20}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{20}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}-1+\frac{1}{2}+....+\frac{1}{10}\)
\(=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\left(đpcm\right)\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{19}-\frac{1}{20}\)
= \(\left(1+\frac{1}{3}+\frac{1}{5}+.........+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.........+\frac{1}{20}\right)\)
= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{19}+\frac{1}{20}-2\left(\frac{1}{2}+\frac{1}{4}+.......+\frac{1}{20}\right)\)
= \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..........+\frac{1}{19}+\frac{1}{20}+1+\frac{1}{2}+.............+\frac{1}{20}\)
= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.........+\frac{1}{20}\)
Vậy biểu thức \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.........+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+.......+\frac{1}{20}\)( đpcm)
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
CMR
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.......+\frac{1}{19}>1\)
Vì \(\frac{1}{4}>\frac{1}{16};\frac{1}{5}>\frac{1}{16};...;\frac{1}{19}>\frac{1}{16}\)
\(\Rightarrow\)\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{19}>\frac{1}{16}+\frac{1}{16}+.....+\frac{1}{16}\) ( 16 số)
\(=\frac{1+1+1+.....+1}{16}\)
\(=\frac{16}{16}=1\)
Vậy: \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.....+\frac{1}{19}>1\)
Ta có: 1/4 + 1/5 + 1/6 +.....+ 1/19 > 1/4 + ( 1/20 + 1/20 + .......) ( có 15 p/s 1/20) = 1/4 + 3/4 = 1
Vậy 1/4 + 1/5 + 1/6 + ...... + 1/19 > 1