Chứng tỏ rằng hai số n+1 và 3n+4 là hai số nguyên tố cùng nhau
(ghi lời giải lun nha !!)(ai làm gấp để chìu ni mk kiểm tra 1 tiết toán rou)
Các Bạn giải hộ mk bài toán này nha
Cho hai số 2n+3 và 3n+4 với (n thuộc N*).Chứng tỏ rằng hai số trên nguyên tố cùng nhau
Thanks các bạn nhìu nhoa
\(2n+3\)và \(3n+4\)
Gọi d là ước chung lớn nhất của \(2n+3\)và \(3n+4\)
Ta có :
\(2n+3⋮d=\left(2n+3\right)\cdot3⋮d=\left(6n+9\right)⋮d\)
\(3n+4⋮d=\left(3n+4\right)\cdot2⋮d=\left(6n+8\right)⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\)Vậy \(2n+3\)và \(3n+4\)là hai số nguyên tố cùng nhau
Gọi ƯCLN ( 2n+3;3n+4 ) là d
\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3.\left(2n+3\right)⋮d\\2.\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}\)\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\text{Ư}\left(1\right)=\pm1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
đpcm
Chứng tỏ rằng hai số n + 1 và 3n + 4 n ∈ N là hai số nguyên tố cùng nhau
Chứng tỏ rằng hai số n+1 và 3n+4(n ∈ N) là hai số nguyên tố cùng nhau
Gọi d là ước chung của n+1 và 3n+4
Ta có n+1 ⋮ d; 3n+4 ⋮ d
Suy ra (3n+4) - (3n+3) ⋮ d => 1 ⋮ d => d = 1
Vậy hai số n+1 và 3n+4 (n ∈ N) là hai số nguyên tố cùng nhau
chứng tỏ rằng hai số n+1 và 3n+4 là hai số nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
gọi UCLN(n+1;3n+4) là d
=>3n+4 chia hết cho d
=> n+1 chia hết cho d
=>3(n+1) chia hết cho d
=>3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1 và 3n+4 nguyên tố cùng nhau
Chứng tỏ rằng hai số n + 1 và 3n + 4 (n thuộc N) là hai số nguyên tố cùng nhau.
n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
Gọi d là ước chung cua n+1 và 3n+4
Ta có n+1 :d và 3n +4:d
Suy ra (3n+4)-(3n+3):d suy ra1:d suy ra d=1
Vậy n+`1 và 3n+4 la hai số nguyên tố cùng nhau
CHỨNG MINH RẰNG
A) Hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau .
B) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau .
C) 2n + 1 và 3n + 1 ( n \(\in\)N ) là hai số nguyên tố cùng nhau .
LÀM NHANH MK CẦN GẤP
A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.
Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:
n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.
Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
C) Gọi a là ƯCLN của 2n+1 và 3n+1 => 2n+1 và 3n+1 chia hết cho a => 6n+3 và 6n+2 chia hết cho a => (6n+3)-(6n+2) chia hết cho a hay 1 chia hết cho a => a=1 => 2n+1 và 3n+1 nguyên tố cùng nhau.
Vậy 2n+1 và 3n+1 nguyên tố cùng nhau.
Chứng tỏ rằng hai số n+1 và 3n+4(n thuộc N)là hai số nguyên tố cùng nhau.
Gọi d là ƯCLN(n + 1 ; 3n + 4)
Vì n + 1 chia hết cho d nên (n + 1) * 3 = 3n + 3 chia hết cho d
Mà 3n + 4 cũng chia hết cho d
=> (3n + 4 - 3n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vì ƯCLN(n + 1 ; 3n + 4) = d = 1 nên n + 1 và 3n + 4 là 2 số nguyên tố cùng nhau
chứng tỏ rằng hai số n+1 và 3n+4 (n thuộc N) là hai số nguyên tố cùng nhau
gọi d là ƯC (n+1;3n+4)
ta có n+1 chia hết cho d=>3(n+1) chia hết cho d=>3n+3 chia hết cho d
mà 3n+4 cũng chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=> 1 chai hết cho d
vậy d=1
=>ƯC(n+1;3n+4)=1
vậy ... nguyên tố cùng nhau
=>dpcm