Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
slyn
Xem chi tiết
Nguyễn Minh Quang
Xem chi tiết
Trần Tuấn Hoàng
20 tháng 2 2022 lúc 19:29

-Qua E,F kẻ các đường thẳng song song với BC cắt AM lần lượt tại P,Q.

-Xét △PIF có: PF//EQ (gt).

\(\Rightarrow\dfrac{EQ}{PF}=\dfrac{IE}{IF}\) (hệ quả định lí Ta-let).

-Xét △ABM có: EQ//BM (gt).

\(\Rightarrow\dfrac{EQ}{BM}=\dfrac{AE}{AB}\) (hệ quả định lí Ta-let). (1)

-Xét △ACM có: PF//CM (gt).

\(\Rightarrow\dfrac{PF}{CM}=\dfrac{AF}{AC}\) (hệ quả định lí Ta-let). 

Mà \(BM=CM\) (M là trung điểm BC), \(AE=AF\) (gt)

\(\Rightarrow\dfrac{PF}{BM}=\dfrac{AE}{AC}\) (2)

-Từ (1), (2) suy ra:

 \(\dfrac{\dfrac{EQ}{BM}}{\dfrac{PF}{BM}}\)=\(\dfrac{\dfrac{AE}{AB}}{\dfrac{AE}{AC}}\)

\(\Rightarrow\) \(\dfrac{EQ}{PF}=\dfrac{AC}{AB}\) mà \(\dfrac{EQ}{PF}=\dfrac{IE}{IF}\left(cmt\right)\)

Nên \(\dfrac{IE}{IF}=\dfrac{AC}{AB}\)

hoàng
Xem chi tiết
Lê Trần Khánh Duy
Xem chi tiết
Lê Trần Khánh Duy
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Phan Thanh Tịnh
22 tháng 9 2016 lúc 22:32

\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)

\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)

\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

Hoàng Thanh Tùng
22 tháng 9 2016 lúc 19:31

tôi không biết

OIUoiu
22 tháng 9 2016 lúc 20:59

I don't know

Nguyễn Trung Hiếu
Xem chi tiết
Neet
22 tháng 9 2016 lúc 22:52

ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)

=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)

(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả  định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy  là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)

=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)

=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)

=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)

Áp dụng BĐT coosshi cho 2 số dương ,ta có:

\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)

vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)

Hai Anh
Xem chi tiết
Nguyễn Diệu Anh
4 tháng 12 2018 lúc 16:30

Tớ chứng minh phần a hơi ngược tí nhé ( cminh vế sau trước)

a) Ta có: AB = AE + EB;   AC = AF + FC

Mà AB = AC (gt)

      AE = AF (gt)

=>  EB = FC

Vì tam giác ABC có AB = AC => tam giác ABC cân tại A

=> góc B = góc C (tính chất tam giác cân)

Xét tam giác BEC và tam giác CFB có:

EB = FC (cmt)

góc B = góc C (cmt)

BC chung

=> tam giác BEC = tam giác CFB (c.g.c)

=> BF = CE (2 góc T.Ứ) ; => góc BEC = góc CFB

b)  C1: Xét tam giác IBE và tam giác ICF có:

IE = IF (gt)

góc BEC = góc CFB (cmt)

EB = FC (cmt)

=> tam giác IBE = tam giác ICF (c.g.c)

C2:  Ta có BF = IB + IF

                 CE = CI + IE

Mà BF = CE (cmt)

      IE = IF (gt)

=> IB = IC

Ta có góc BIE = góc CIF ( 2 góc đối đỉnh)

Xét tam giác IBE và tam giác ICF có:

IE = IF (gt)

góc BIE = góc CIF (cmt)

IB = IC (cmt)

=> tam giác IBE = tam giác ICF (c.g.c)

Subin
Xem chi tiết