cho tam giac ABC vuong tai A gọi M là trung điểm của AB kẻ MH vuông góc với BC tai H chứng minh rằng CH -BH=AC
cho tam giác ABC vuông tại A. Gọi M là trung điểm của AB kẻ MH vuông góc với BC tại H. chứng minh rằng CH^2 - BH^2 =AC^2
Cho tam giác ABC vuông tại A . Gọi M là trung điểm AB .Kẻ MH vuông góc vs BC tại H .Chứng minh rằng : CH bình - BH bình = AC bình
\(\text{Nối M với C}\)
\(\text{Xét :}\)\(\Delta MCH\perp H\text{ có}:\)
\(CH^2+MH^2=MC^2\left(Đlpytago\right)\)
\(\Rightarrow CH^2=MC^2-MH^2\)
\(\Rightarrow CH^2-BH^2=MC^2-MH^2-BH^2\)
\(\Rightarrow CH^2-BH^2=MC^2-\left(MH^2+BH^2\right)\)
\(\Rightarrow CH^2-BH^2=MC^2-MB^2\left(\Delta MHB\perp\text{tại H,MB^2}=MH^2+BH^2\left(pytago\right)\right)\)
\(\Rightarrow CH^2-BH^2=AC^2\)\(\left(\Delta AMC\perp\text{tại A},MC^2-MA^2=AC^2\left(PYTAGO\right)\right)\)
Từ A hạ AK ⊥BC( AK∈ BC)
{AK⊥BCMN⊥BC{AK⊥BCMN⊥BC
⇒AK//MN
=>NBKNNBKN=MBMAMBMA=1
=>KN=NB
Xét Δ vuông CAK và Δ ABC
AKCˆAKC^=CABˆCAB^=90o
AKCˆAKC^=ACBˆACB^
=> Δ CKA đồng dạng với Δ CAB
=>CACBCACB=CKCACKCA⇔CA2=CB.CK
=>CA2= (CN+NB)(CN-NB)
=CN2-NB2(đpcm)
Cho tam giác ABC vuông tại A gọi M là trung điểm của AB kẻ MH vuông góc với BC tại H. Chứng minh : CH2-BH2=AC2
Cho tam giac abc can tai A có M là trung điểm của BC. H là hinh chiếu của M xuông AC , O là trung điểm của MH , CM OA vuông góc với BH
Cho tam giác ABC vuông tại A gọi M là trung điểm của AB kẻ MH vuông góc với BC tại H. Chứng minh : BH^2 = AC^2+ BH^2
Cho tam giac ABC vuong tai C (AC <BC).tia phan giac cua goc A cat BC tai I.Tu B ke duong vuong góc voi AI tai H. Tu I ke duong vuong goc voi IK (K la trung diem cua AB) cat AC tai M va cat BH tai N.chung minh I la trung diểm của MN
cho tam giác ABC vuông tai A có ( AB < AC) tia Bx là phân giac của góc B cắt AC tai D, từ C vẽ đường vuông góc vói Bx tại E. gọi M là trung điểm của BC, qua D vẽ đường vuông goc với DM cắt AB tại K và CE tai H. chứng minh DH=DK
Cho tam giác ABC có AB < AC, M là trung điểm của BC, Ax là tai phân giác của BAC. Từ M kẻ đường vuông góc với Ax tại H. Kéo dài MH cắt AB, AC lần lượt ở D và E. Chứng minh rằng: BD=CE
Cho tam giác ABC, AB<AC, M là trung điểm của Bc. Ax là tia phân giác của hạt{BAC}.Từ M kẻ đường thẳng vuông góc với Ax tại H. Kéo dài MH cắt AB, AC lần lượt ở D, E. Cmr: BD=CE
Cho tam giác ABC, AB<AC, M là trung điểm của Bc. Ax là tia phân giác của hạt{BAC}.Từ M kẻ đường thẳng vuông góc với Ax tại H. Kéo dài MH cắt AB, AC lần lượt ở D, E. Cmr: BD=CE
cho tam giác ABC cân tại A.Từ trung điểm M của BC, kẻ MH vuông góc với AC tại H. Gọi I là trung điểm của MH. Chứng minh AI vuông góc với BH